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ABSTRACT

The vertical transport by shallow nonprecipitating cumulus clouds of conserved variables, such as the total
specific humidity or the liquid water potential temperature, can be well modeled by the mass-flux approach, in
which the cloud field is represented by a top-hat distribution of clouds and its environment. The mass-flux budget
is computed by conditionally sampling the prognostic vertical velocity equation by means of a large eddy
simulation of shallow cumulus clouds. The model initialization is based on observations made during the Barbados
Oceanographic and Meteorological Experiment (BOMEX). Several different sampling criteria are applied. The
presence of liquid water is used to select clouds, whereas additional criteria are applied to sample cloud updraft,
downdraft, and core properties. A comparison between the budgets of the mass flux and the vertical velocity
variance show that they appear to be qualitatively similar. The mass flux is driven by buoyancy in the lower
part of the cloud layer, whereas turbulent transport is important in generating mass flux in the upper part of the
cloud layer. Pressure and subgrid-scale effects typically act to dissipate mass flux. Entrainment and detrainment
rates for the vertical velocity equation are presented. They are found to be smaller in comparison to the ones
for conserved variables. It is explained that the top-hat structure for the virtual potential temperature is degraded
by mixing at the cloud boundaries leading to a subsequent evaporative cooling of cloud droplets that supports
the formation of negatively buoyant cloud parcels.

1. Introduction

The parameterization of vertical transport due to cu-
mulus clouds is often performed by a mass-flux ap-
proach (Tiedtke 1989). In such schemes it is assumed
that the cumulus cloud field can be well represented by
a top-hat distribution. This decomposition requires a set
of two separate prognostic equations that describe the
(thermo)dynamical evolution of the clouds, and the sur-
rounding environment. These two equations both in-
clude an entrainment and a detrainment term that rep-
resent the effect of lateral mixing of mass at the cloud
interface (Stommel 1947; Arakawa and Schubert 1974;
Tiedtke 1989; Siebesma and Holtslag 1996; Siebesma
1998). This parameterization of the net lateral exchange
mirrors the idea that, if the velocity at the cloud bound-
ary is pointed cloud inward, air properties of the en-
vironment are entrained by the cloud and vice versa.
The lateral mixing rates to be used in a model can be
based on observations (Nitta 1975; Raga et al. 1990) or
from large eddy simulation (LES) results of shallow
cumuli (Siebesma and Cuijpers 1995; Grant and Brown
1999; Stevens et al. 2001).
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In addition to the lateral mixing rates, the cloud frac-
tion and the convective mass flux need to be parame-
terized. The latter is usually diagnosed from the con-
tinuity equation for mass. The system can be then closed
by either diagnosing or predicting the cloud fraction.
LES-based studies of shallow cumuli have shown that,
with suitable entrainment and detrainment rates, a mass-
flux decomposition can represent quite well the vertical
fluxes of conserved thermodynamic variables (Siebesma
and Cuijpers 1995).

Instead of using the continuity equation for mass to
diagnose the mass flux, some mass-flux-based cumulus
parameterizations prognose the vertical velocity or the
mass flux in the cloud (Asai and Kasahara 1967; Holton
1973; Cotton 1975; Lappen and Randall 2001a,b,c).
This approach adds some more unknowns to solve since
it requires the consideration of, for example, pressure
and buoyancy effects. In view of the utility of a vertical
velocity equation, one of our main goals in this paper
is to investigate how well the mass-flux decomposition
can represent the vertical velocity variance budget in
LES of shallow cumuli. Moreover, we will analyze the
budgets of the conditionally sampled vertical velocity
and the mass flux.

In section 2, we present the conditionally sampled
budget equations for the vertical velocity (Young 1988b;
Schumann and Moeng 1991a,b), the mass flux, and the
vertical velocity variance. In section 3, we summarize
the LES of trade cumuli during BOMEX (the Barbados
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TABLE 1. Summary of sampling criteria: uy is the horizontal mean
value of the virtual potential temperature and ql is the liquid water
content.

Indicator
function Type Sampling criteria

I0

I1

I2

I3

I4

I5

Slab mean
Updraft
Cloud
Cloud updraft
Cloud downdraft
Cloud core

None
w . 0
ql . 0
ql . 0 and w . 0
ql . 0 and w , 0
ql . 0 and w . 0 and uy . uy

Oceanographic and Meteorological Experiment in June
1969), which we use to analyze these budgets. In section
4, we present the conditionally sampled mass-flux bud-
gets for various sampling criteria defining the active
clouds, and compare them with Reynolds-averaged var-
iance budgets. In section 5 we analyze reasons for the
poor performance of the top-hat (mass flux) approxi-
mation in explaining the buoyancy flux and vertical ve-
locity variance. Conclusions follow in section 6.

2. The conditionally sampled vertical velocity
equation

a. LES model equations

In our simulations and analyses, we use the Boussi-
nesq equations and their LES implementation. The fil-
tered prognostic equations for the resolved part of an
arbitrary conserved variable c and the Boussinesq form
of the momentum equation read, respectively,

]u c ]u0c0]c j j
5 2 2 1 S , (1)c]t ]x ]xj j

]u u ]t]u g ]pi j i ji 5 (u 2 u )d 2 2 2 . (2)y y i3]t u ]x ]x ]x0 j i j

The variable c represents the total water specific hu-
midity qt or the liquid water potential temperature ul;
Sc is a source term that can represent processes like
radiation or precipitation. The velocity components ui

5 (u, y, w) are the components in xi 5 (x, y, z) direc-
tions, respectively; p is the modified pressure (Dear-
dorff 1973); t is the time; g the gravitational accelera-
tion; uy 2 the perturbation of the virtual potentialuy

temperature with respect to its horizontally averaged
mean value; u0 the reference-state potential temperature;
dij the Kronecker delta; and and tij are the subgridu0c0j

flux terms that arise from the filtering procedure. In the
LES model the latter are expressed as the product of an
eddy viscosity Km or eddy diffusivity Kc and the local
gradient of the resolved variable:

]c
u0c0 5 2K , (3)j c ]xj

]u]u jit 5 2K 1 . (4)i j m1 2]x ]xj i

b. Conditional sampling technique

The conditionally sampled mean value [c]s is defined as

I c dAE s

A
[c] 5 , (5)s

I dAE s

A

where the integration is performed over a horizontal
plane at height z and I s is an indicator function: I s 5
1 if a sampling criterion is met, and I s 5 0 otherwise.
In the LES model the integrals are evaluated by a
summation over discrete grid points (Schumann and
Moeng 1991a,b). To determine properties of the cu-
mulus clouds only, one usually samples on the pres-
ence of liquid water (ql ), although several other cri-
teria are sometimes added. For instance, the cloud
core is defined as the part of the cloud that has both
an upward vertical velocity and a positive virtual po-
tential temperature excess. The sampling criteria that
have been applied are summarized in Table 1. The
sampled area fraction s s is defined as

I dAE s

A
s 5 . (6)s

dAE
A

For a two-stream approximation we can define the frac-
tion of the environment se as

s 5 1 2 s .e s (7)

By this definition the environment represents the area
fraction of all points where the applied sampling cri-
terion is not satisfied. In the remainder of the paper the
square brackets that indicate the conditionally sampled
mean are, for notational convenience, omitted except
when the operator is applied on a derivative. The hor-
izontal slab-mean value is indicated by an overbar and
is given by

c 5 s c 1 (1 2 s )c .s s s e (8)

We define the mass flux Mc as

M [ s (w 2 w) 5 s (1 2 s )(w 2 w ),c s s s s s e (9)

which has, for notational convenience, units of meters
per second. The continuity equation for mass is given by

]M ]sc 5 2 1 E 2 D, (10)
]z ]t

with E and D the lateral entrainment and detrainment
rates, respectively. The Reynolds-averaged covariance

is related to mass-flux variables as (Siebesma andw9c9
Cuijpers 1995)
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w9c9 5 s [w9c9] 1 (1 2 s )[w9c9]s s s e

5 s (1 2 s )(w 2 w )(c 2 c )s s s e s e

1 s [w0c0] 1 (1 2 s)[w0c0] , (11)s s e

where the latter two terms indicate the so-called sub-
plume fluxes, which are due to the contributions of
perturbations with respect to the conditionally sam-
pled mean. We distinguish second-order moments in
the top-hat (mass flux) approach by a subscript MF.
In this notation, the vertical flux ( MF ), the vari-w9c 9
ance ( MF ), and their relation to the Reynolds-c9c 9
averaged statistics read

w9c9 5 s (1 2 s )(w 2 w )(c 2 c )MF s s s e s e

5 k w9c9, (12)wc

2c9c9 5 s (1 2 s )(c 2 c ) 5 k c9c9. (13)MF s s s e cc

The factors kwc and kcc are a measure for the repre-
sentativity of the top-hat approach for the Reynolds-
averaged second-order moments. For a cumulus cloud
field the factor kwc is close to one (Siebesma and Cu-
ijpers 1995), indicating that the top-hat flux represents
the Reynolds-averaged flux of a conserved variable rath-
er well. In that case the subplume contribution is very
small. For stratocumulus and the clear convective
boundary layer kwc has an approximate value of 0.6
(Schumann and Moeng 1991b; Wyngaard and Moeng
1992; Young 1988a; de Laat and Duynkerke 1998). In
general, the top-hat approximation is less well capable
to represent (Wang and Stevens 2000).c9c9

c. The conditionally sampled prognostic vertical
velocity equation

Conditionally sampling Eq. (2) for the vertical ve-
locity gives

2]w g ]w ]u wh5 (u 2 u ) 2 2y ,s y[ ] [ ] [ ]]t u ]z ]xs 0 s h s

]t]p 3 j
2 2 , (14)[ ] [ ]]z ]xs j s

where uh 5 (u, y) and ]xh 5 (]x, ]y).
If the sampling operator is moved inside a derivative,

two additional terms arise due to the chain rule of dif-
ferentiation and the application of Leibniz’ rule (Young
1988b; Schumann and Moeng 1991a). The conditionally
sampled time derivative of the vertical velocity, for ex-
ample, is then given by

]w ]w w ]s ]ws s s5 1 1 , (15)5 6[ ]]t ]t s ]t ]ts s b,s

where we used the braces with subscript b,s to indicate
the net effect of the boundary terms that follow from
Leibniz’ rule. To calculate the term in braces one needs
to track the evolution of the cloud boundaries. However,
one can avoid this laborous exercise by computing the
other three terms in (15). Similarly, the second term on
the rhs. of (14) can be rewritten

2 2 2 2]w ][w ] [w ] ]s ]ws s s5 1 1 . (16)5 6[ ]]z ]z s ]z ]zs s b,s

1) THE PROGNOSTIC MASS-FLUX EQUATION

An identical equation to (14) can be written for the
environment simply by replacing the subscript s with e.
If we multiply Eq. (14) times a factor ss(1 2 ss) and
subtract the conditionally sampled prognostic vertical
velocity equation for the environment multiplied times
the same factor, we obtain

]M ]w ]wc 1 s (1 2 s ) 2s s 5 6 5 61 2]t ]t ]tb,s b,e

2 2g ]w ]w
5 s (1 2 s ) (u 2 u ) 2 s (1 2 s ) 2s s y ,s y ,e s s [ ] [ ]1 2u ]z ]zs e0

]t ]t]u w ]u w ]p ]p 3 j 3 jh h2 s (1 2 s ) 2 2 s (1 2 s ) 2 2 s (1 2 s ) 2 , (17)s s s s s s[ ] [ ] [ ] [ ] [ ] [ ]1 2 1 2 1 2]x ]x ]z ]z ]x ]xs e s e s eh h j j

where we used (8), (9), and (15) to obtain the tendency of the mass flux:

]w ]w ]s w ](1 2 s )w ]w ]ws s s es (1 2 s ) 2 5 (1 2 s ) 2 s 1 s (1 2 s ) 2s s s s s s 5 6 5 6[ ] [ ]1 2 1 2]t ]t ]t ]t ]t ]ts e b,s b,e

]M ]s ]w ]wc s5 1 w 1 s (1 2 s ) 2 . (18)s s 5 6 5 61 2]t ]t ]t ]tb,s b,e
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Note that we neglect the effect of the mean vertical
velocity term ( ) in the prognostic mass-flux equationw
(17) and the second-order moment equations.

2) ENTRAINMENT AND DETRAINMENT

Siebesma and Cuijpers (1995) computed the lateral
entrainment and detrainment rates by a careful analysis
of the budget equation for conserved variables:

]s c ]M c ]s [w0c0]s s c s s s5 2 2
]t ]z ]z

1 Ec 2 Dc 1 sS . (19)e s c,s

Likewise, we can express a similar equation for the
conditionally sampled vertical velocity:

]s w ]M w ]s [w0w0]s s c s s s5 2 2
]t ]z ]z

1 E w 2 D w 1 s S , (20)w e w s s w,s

with Ew and Dw representing the entrainment and de-
trainment rates to be diagnosed from the vertical ve-
locity equation. The source function Sw,s comprises the
buoyancy and the pressure terms:

g ]p
S 5 (u 2 u ) 2 . (21)w,s y ,s y [ ]u ]z0 s

After comparing (14) multiplied times ss to (20) and
considering (15) and (16) it follows that the total lateral
exchange term is given by

]t]u w 3 jhE w 2 D w 5 2s 2 sw e w s s s[ ] [ ]]x ]xh s j s

2]w ]w
2 s 2 s . (22)s s5 6 5 6]t ]zb,s b,s

If we require that the continuity equation must be sat-
isfied,

]M ]sc s5 2 1 E 2 D ; (23)w w]z ]t

Ew and Dw can be obtained from (22) and (23).

3) THE VERTICAL VELOCITY VARIANCE EQUATION

In order to derive a prognostic equation for the ver-
tical velocity variance in the mass-flux approach we will
use as starting equations (20) multiplied times (1 2 ss)
and the analogous equation for the vertical velocity in
the environment multiplied times a factor ss,

]s ws s(1 2 s )s ]t

]M w ]s [w0w0]c s s s5 2(1 2 s ) 2 (1 2 s )s s]z ]z

1 (1 2 s )(E w 2 D w ) 1 s (1 2 s )S , (24)s w e w s s s w,s

](1 2 s )ws ess ]t

]M w ](1 2 s )[w0w0]c e s e5 s 2 ss s]z ]z

2 s (E w 2 D w ) 1 s (1 2 s )S . (25)s w e w s s s w,e

After multiplying (24) and (25) times 2(ws 2 we) and
some mathematical manipulations according to the pro-
cedure presented by de Roode et al. (2000) we obtain

2 2]s (1 2 s )(w 2 w ) g ](1 2 2s )M (w 2 w )s s s e s c s e5 2 M (u 2 u ) 2c y ,s y ,e]t u ]z0

1 ]s [w0w0] 1 ](1 2 s )[w0w0] ]p ]ps s s e2 2M 2 2 2M 2c c [ ] [ ]1 2 1 2s ]z 1 2 s ]z ]z ]zs es s

22 (E 1 D )(w 2 w ) 1 R (26)w w s e

with the residual R,

]ss2R 5 2(1 2 2s )(w 2 w ) , (27)s s e ]t

where we neglect terms including the mean vertical ve-
locity, but unlike de Roode et al. (2000) we do not
assume ]ss/]t 5 0.

In the Reynolds-averaging approach the vertical ve-
locity variance budget equation reads (Stull 1988)

2 3 ]t 9]w9 g ]w9 ]p9 3 j
5 2 w9u9 2 2 2w9 2 2w9 , (28)y]t u ]z ]z ]x0 j

where the primes indicate perturbations of the resolved
variables with respect to the horizontal slab-mean value.
By (12) and (13), the correspondence between the ver-
tical velocity variance tendency, the buoyancy flux, and
the pressure term in (26) and (28) is obvious. The dis-
sipation of the vertical velocity variance in (26) is rep-
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TABLE 2. Summary of the terms in the vertical velocity variance, mass flux, and conditionally sampled vertical velocity budgets.

Term w9w9 budget M budgetc w budgets

Tendency
2]w9

]t

]M ]w ]wc 1 s (1 2 s ) 2s s 5 6 5 61 2]t ]t ]tb,s b,e

]w w ]s ]ws s s1 1 5 6]t s ]t ]t b,ss

Buoyancy
g

2 w9u9yu0

g
s (1 2 s )(u 2 u )s s y,s y,eu0

g
(u 2 u )y,s y,eu0

Pressure ]p9
22w9

]z

]p ]p
2s (1 2 s ) 2s s 1[ ] [ ] 2]z ]zs e

]p
2 [ ]]z s

Turbulent transport
3]w9

2
]z

2 2]w ]w
2s (1 2 s ) 2s s 1[ ] [ ] 2]z ]zs e

2 2 2][w ] [w ] ]s ]ws s s2 2 2 5 6]z s ]z ]z b,ss

Subgrid dissipation
]t 93 j

22w9
]xj

]t ]t3 j 3 j
2s (1 2 s ) 2s s 1[ ] [ ] 2]x ]xs ej j

]t 3 j
2 [ ]]z s

Lateral exchange —
]u w ]u wh h2s (1 2 s ) 2s s 1[ ] [ ] 2]z ]zs e

]u wh2 [ ]]z s

FIG. 1. The vertical velocity variance budget. Line styles are according to the legend.

resented by the term that includes the lateral mixing
rates. Moreover, Randall et al. (1992) showed that for
a top-hat distribution the turbulent transport term is giv-
en by

3 2w9 5 (1 2 2s )M (w 2 w ) . (29)MF s c s e

Table 2 summarizes the components of the budget equa-
tions for the vertical velocity variance, mass flux, and
the conditionally sampled vertical velocity ws.

3. Large eddy simulation of the BOMEX case

a. Experimental setup

The large eddy simulation has been performed with
the Institute for Marine and Atmospheric Research,
Utrecht/Royal Netherlands Meteorological Institute
(IMAU/KNMI) model (Cuijpers 1994; Siebesma and
Cuijpers 1995; VanZanten 2000). The simulation was
done with a central-difference scheme (64 3 64 3 75
points). The horizontal and vertical grid spacings were

100 m and 40 m, respectively. The initialization was
based on the BOMEX field experiment. We performed
a simulation of 6 hours, and used the results of the last
4 hours for our analysis by averaging over all output
fields during this time period. Since only a few clouds
penetrate the inversion layer above 1500 m, the statistics
in this layer are very poor and are therefore not dis-
cussed. The initialization and large-scale forcings are
described in detail by Siebesma and Cuijpers (1995)
and a follow-up study by the participants of the GEWEX
(Global Water and Energy Experiment), Cloud Systems
Study Working Group 1.

b. The vertical velocity variance budget

To illustrate the dynamics of shallow cumulus clouds,
the budget for the vertical velocity variance , com-2w9
puted according to (28), is shown in Fig. 1. The buoy-
ancy flux is the primary production source of . Ex-2w9
cept for a shallow layer around the cloud base the buoy-
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FIG. 2. The variance budgets for the liquid water potential tem-
perature. (a) Reynolds-averaged equations. (b) Mass-flux approach
for the cloud–environment decomposition. Line styles are according
to the legend shown in (a).

ancy flux is positive from the surface up to the inversion
layer. At the top of the mixed layer, where the buoyancy
flux is negative, saturated air parcels can reach their
level of free convection by the upward vertical mo-
mentum they have gained. At these levels the turbulence
transport term is the major term that is producing ver-
tical velocity variance. In addition, the pressure term
gives a positive, albeit small contribution, near the cloud
base as well. The turbulent transport term becomes pos-
itive above about 1100 m. In the bulk of the cloud layer
the dissipation and the pressure gradient term act to
destroy vertical velocity variance. The pressure term
redistributes vertical momentum into the horizontal di-
rections, whereas the dissipation of the resolved vertical
motions produces subgrid-scale turbulence motions. Cu-
ijpers et al. (1996) showed vertical velocity variance
budgets for shallow cumuli from LES model results
based on observations in Puerto Rico and during the
Atlantic Trade Wind Experiment (ATEX). These bud-
gets are qualitatively similar to the one from BOMEX.
However, Cuijpers et al. showed that in the cloud layer
the dissipation is considerably less negative than the
pressure term, whereas during BOMEX they are nearly
as important. This implies that the vertical velocity var-
iance budget in shallow cumuli does not scale univer-
sally, which is a typical characteristic for cloudy bound-
ary layers.

c. The variance budget for the liquid water potential
temperature

De Roode et al. (2000) showed that the budget equa-
tion for the variance of a conserved variable in the mass-
flux approach (13) reads

2]s (1 2 s )(c 2 c ) ]cs s s e 5 22M (c 2 c )c s e]t ]z
2](1 2 2s )M (c 2 c )s c s e2

]z
22 (E 1 D)(c 2 c ) . (30)s e

After comparing (30) with the Reynolds-averaged var-
iance budget equation,

2]c9 ]c ]w9c9c9
5 22w9c9 2 2 2e , (31)c]t ]z ]z

they concluded that the sum of the lateral mixing rates
E 1 D, can be interpreted as an inverse dissipation
timescale. They found that for a dry convective bound-
ary layer these two budgets were very similar. As an-
other example, we show the variance budgets for the
liquid water potential temperature variance ( ) for the2u9l
BOMEX cumulus case in Fig. 2. It is clear that the bulk
features of the two variance budgets are nearly the same.
As inspection of the variance production term imme-
diately makes clear that the fundamental mass-flux re-
lation on which the top-hat approximation is based is

satisfied, namely that the subplume contributions in (11)
are negligibly small for the vertical flux of a conserved
variable. Moreover, the main conclusion of de Roode
et al. that parameterizing the dissipation term in the
Reynolds variance budget is analogous to parameter-
izing E and D in the mass-flux equations is also sup-
ported by the budgets for cumulus clouds.

These findings raise the question whether similar re-
sults also hold for the vertical velocity equation. The
next section therefore compares the Reynolds-averaged
vertical velocity variance budget (28) shown in Fig. 1
to the one according to the mass-flux approach (26).

4. Conditionally sampled vertical velocity budgets

a. The mass-flux budget

The mass-flux budgets as computed according to Eq.
(17) are shown in Fig. 3. They have similar features as
the vertical velocity variance budget in Fig. 1. The buoy-
ancy term in the cloud mass-flux budget (sampling cri-
terion I2 according to Table 1) has a negative value at
the upper part of the cloud layer, whereas is pos-w9u9y
itive in this part. Therefore, the positive horizontal-mean
buoyancy flux in this layer must be due to turbulence
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FIG. 3. Mass-flux budgets for the (a) cloud, (b) cloud updrafts, (c) cloud core, and (d) updraft–downdraft decomposition.
The line styles are according to the legend shown in (a).

in the dry environment and to subplume perturbations
within the cloud. By definition, the cloud core must
have a positive buoyancy. Irrespective of the kind of
decomposition applied, the turbulent transport term is
an important production term for the convective mass
flux in the upper part of the cloud layer. The condi-
tionally sampled horizontal advection of vertical ve-
locity, which formally represents the lateral exchange
of mass flux, acts to produce mass flux at the lower
part of the cloud layer and diminishes the mass flux
above. The role of the pressure and subgrid flux terms
are similar to the ones in the vertical velocity variance
budget in the sense that they both tend to destroy mass
flux. In that respect the subgrid flux term is analogous
to the dissipation term in the vertical velocity variance
budget, and this result might be somewhat controver-
sial. Scaling considerations lead to the conclusion that
dissipation by molecular viscosity can be neglected for
motions on scales typical for cumulus convection and
that it is only of importance at the largest wavenumbers
of the velocity spectra—the Kolmogorov scales. The
‘‘dissipation’’ in the mass-flux budget, however, arises
from the subgrid parameterization term (4) where the
flux is parameterized as the product of an eddy vis-
cosity times the local gradient. In the vertical velocity

variance equation it is exactly this term that causes the
dissipation (see Table 2). However, the amount of the
resolved kinetic energy that is lost is not dissipated
into heat, but acts as a production term in the prog-
nostic equation for the subgrid TKE equation, and
therefore the subgrid term can be interpreted as a mech-
anism to convert resolved motions into subgrid per-
turbations. Hence, in the mass-flux budgets the subgrid
parameterization term removes vertical momentum
from the sampled eddies to feed the turbulent motions
of small-scale eddies that have sizes smaller than the
grid size of the LES.

For the cloud core decomposition the total tendency
of the mass flux including the boundary terms is sig-
nificant. Since the cloud core mass flux hardly changes
with time, ]Mc/]t ø 0, this implies that the time ten-
dency of the mass flux is predominantly due to the Leib-
niz boundary term in (15). It means that some of the
cloud parcels that are accelerated disappear from the
cloud sample at the next computational time step by
detrainment to its surrounding environment.

b. The vertical velocity budget
The convective available potential energy (CAPE)

can be written as
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FIG. 4. The budget of the conditionally sampled vertical velocity.
(a) All terms sampled according to (14) for the cloud core. The
turbulent transport term [first two components on the rhs. of (16)]
and the buoyancy for (b) the cloud core and for (c) the cloud. Line
styles are according to the legend. To emphasize the budget for the
lower cloud layer the results above 1500 m are not shown.

zLOC g
CAPE 5 (u 2 u ) dz, (32)E y ,s y ,eu0zLFC

where zLFC represents the level of free convection and
zLOC the limit of convection, that is, the level above
which the cloud is negatively buoyant with respect to
its environment. CAPE is often used to estimate the
characteristic vertical velocity scale (wCAPE) in shallow
cumulus clouds (Stull 1988),

1/2w 5 (2CAPE) ,CAPE (33)

in which it is assumed that all the potential energy is
converted into kinetic energy.

Figure 4a shows the budget for the conditionally sam-
pled cloud core vertical velocity according to (14). One
particularly striking feature is that the transport term has
a small negative value in the lower 400 m of the cloud
layer and becomes positive above. If the turbulent trans-
port and the buoyancy would be the sole terms giving
a contribution to the prognostic sampled vertical veloc-
ity equation (14), then the turbulent transport term
should have been the negative of the buoyancy at every
height:

2g ]w
(u 2 u ) 5 . (34)y ,s y [ ]u ]z0 s

Obviously, this is an unrealistic assumption. Figure 4b

depicts the buoyancy and the first two components of
the turbulent transport term on the rhs of (16) separately
for the cloud core. It can be seen that the term including
the vertical derivative of ss is responsible for the pos-
itive value of the total turbulent transport term. The
vertical derivative of the sampled vertical velocity var-
iance, 2][w2]s/]z, is negative throughout the cloud lay-
er. Because the vertical gradient of the sampled vertical
velocity variance is the largest negative term in the bud-
get, one might be inclined to conclude the following
CAPE formula is an acceptable zeroth-order approxi-
mation:

2[w ] 5 CAPE.s,zLOC
(35)

The results in Fig. 4a, however, indicate that this ap-
proximation is justified only because all the other terms
roughly balance each other, rather than that they are
negligibly small. For the cloud–environment decom-
position we find from Fig. 4c that the buoyancy term
in the middle of the cloud layer is about a factor of 2
smaller than the vertical derivative of the conditionally
samped vertical velocity variance, indicating that the
ratio between the two terms in (35) critically depends
on the sampling criterion.

Note that (35) includes the conditionally sampled ver-
tical velocity variance at the limit of convection, where-
as (33) considers a vertical velocity scale. If one assumes
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FIG. 5. Lateral entrainment (Ew) and detrainment (Dw) rates, and
their sum, for the vertical velocities sampled in the cloud core.

FIG. 6. The cloud core vertical velocity variance budget in the mass-flux approach
according to (26); the dissipation is represented by the term, 2(Ew 1 Dw)(ws 2 we)2.
Line styles are according to the legend.

a top-hat distribution for the vertical velocity,
[w2] 5 , then (33) and (35) are identical except2ws,z CAPELOC

for a factor of 2. The factor 2 depends on whether the
advection terms in the vertical momentum equation are
expressed in an advective or in a flux form as in Eq.
(2). In the latter case the continuity equation multiplied
by the vertical velocity has been added to the vertical
momentum equation, which explains why expression
(35) is without the factor 2. Because the horizontal ad-
vection terms are also modified by expressing them in
a flux form, the difference is incorporated into the hor-
izontal momentum flux divergence term, which has been
neglected in the derivation of (35).

c. Entrainment and detrainment

The diagnosed entrainment and detrainment rates for
the cloud core decomposition are shown in Fig. 5. The
entrainment and detrainment rates for the vertical ve-
locity have slightly smaller values compared to the ones
found for conserved variables by Siebesma and Cuijpers

(1995). The entrainment rate Ew becomes negative
above 1000 m. For other sampling criteria we also find
negative values for Ew. However, one should be re-
minded that the net effect of lateral mixing in the vertical
velocity variance budget equation (26) is given by 2(Ew

1 Dw)(ws 2 we)2. If (Ew 1 Dw) . 0, this term acts to
dissipate the vertical velocity variance, which is the case
for the bulk of the cloud layer except in a shallow layer
near the cloud base. As was noted by Petersen et al.
(1999), the approach to compute the lateral entrainment
and detrainment rates as a residual term of (22) does
not guarantee them to be positive. Moreover, they re-
marked that the diagnosed lateral mixing rates may be
scalar dependent, as is the case for the momentum and
the conserved scalar equations. This seems to violate
the concept that D(E) represent the lateral mass ex-
change from the sampled cloud (environment) into the
environment (sampled cloud), which rate is uniquely
determined from the conditionally sampled continuity
equation for mass. The Ew and Dw are the effective bulk
entrainment and detrainment rates that would make the
vertical velocity budgets balance after the assumption
that the entrained or detrained air properties are the
averaged conditionally sampled air properties. The ob-
tained results for Ew and Dw should therefore be rather
interpreted as tuned, reciprocal timescales for the con-
ditionally sampled vertical velocity equation. Note that
in higher-order closure modeling it is not unusual to use
different time or length scales (Mellor and Yamada
1982).

d. The vertical velocity variance budget

Figure 6 presents the vertical velocity variance budget
in the mass-flux approach (26) for the cloud core. The
dissipation is computed with the values for Ew and Dw

shown in Fig. 5. Although they are not identical, the
physical interpretation of the budget is similar to the
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FIG. 7. Conditionally sampled (a) virtual potential temperature flux
(ss[w9 ]s) and (b) vertical velocity variance (ss[w9w9]s). Note thatu9y
only the resolved parts of the fluxes and variances have been con-
ditionally sampled. The total resolved slab-averaged values of w9u9y
and are also shown for reference (solid lines). The line stylesw9w9
are according to the legend shown in (a).

vertical velocity variance budget. Since cloud core
points are partly selected on the basis of a positive buoy-
ancy excess, the buoyancy flux is producing vertical
velocity variance throughout the cloud layer. As a con-
sequence, the cloud core decomposition cannot repre-
sent overshooting clouds that rise due to their inertia
despite a negative buoyancy excess. The turbulent trans-
port and the subplume contribution are both important
in the redistribution of vertical velocity variance from
the lower part to the upper part of the cumulus cloud
layer. A similar result was found by Young (1988b) and
Schumann and Moeng (1991a) from an analysis of up-
drafts and downdrafts in the clear convective boundary
layer. The turbulent transport term was found to redis-
tribute vertical momentum generated in the lower part
of the mixed layer into the upper part of the mixed layer.
The subplume transport was alike the turbulent transport
but at a smaller rate. The pressure term and the dissi-
pation act to destroy the vertical velocity variance. The
cloud core budget resembles the Reynolds-averaged ver-
tical velocity variance budget the most in comparison
to other sampling criteria. In the next section this will
be illustrated from a discussion of the virtual potential
temperature flux in the mass-flux approach.

5. Thermodynamic characteristics of the
conditionally sampled cumulus clouds

a. The conditionally sampled virtual potential
temperature flux and vertical velocity variance

Figure 7 shows the conditionally sampled virtual po-
tential temperature flux ss[w9 ]s and vertical velocityu9y
variance ss[w9w9]s. The vertical flux of the virtual po-
tential temperature is mainly determined by in-cloud
turbulence. Turbulent vertical motions in the cloud and
in the environment contribute nearly equally to the ver-
tical velocity variance. Probably, a good deal of the
vertical velocity variance in the dry environment can
be attributed to gravity waves, which can develop owing
to the conditionally unstable stratification in the cloud
layer.

Since uy is not conserved when evaporation/conden-
sation of liquid water occurs, it is questionable how well
the mass-flux approximation can represent the Reyn-
olds-averaged statistics. In Fig. 8 its validity is checked
for both the virtual potential temperature flux and the
vertical velocity variance. For the cloud core decom-
position the virtual temperature flux in the mass-flux
approach Mc(uy ,s 2 uy ,c) is only a fraction smaller than
the Reynolds-averaged flux , but the difference be-w9u9y
tween the Reynolds-averaged and mass-flux approxi-
mation is larger for the cloud updraft and cloud decom-
position. This can be explained by the fact that for the
cloud core decomposition parcels with a negative virtual
potential temperature perturbation are filtered out,
whereas uy ,s for the cloud/cloud updraft is lowered by
the inclusion of such parcels. The vertical velocity var-

iance is not very well represented by any of the applied
cloud decompositions, either. This can be expected be-
cause a good deal of the vertical velocity variance is
found outside the clouds (see Fig. 7b).

b. Evaporative cooling and the generation of
downdrafts

Figure 9 shows the conditionally sampled area frac-
tion, vertical velocity, the virtual potential temperature,
the total water content, and the potential temperature
for the cloud updraft and downdraft and the cloud core.
The cloud downdraft fraction is rather small throughout
the whole cloud layer. However, as is shown in Fig. 10,
its fraction of the total cloud cover increases from about
4% at 600 m to more than 20% above 1200 m. The
average minimum vertical velocity of the cloud down-
drafts decreases with height to about 20.7 m s21 at 1500
m, where the cloud downdrafts have a significantly low-
er virtual potential temperature than the horizontal slab-
mean value (about 21 K). The absolute value of this
number is more than a factor of 2 larger than the max-
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FIG. 8. (a) Virtual potential temperature flux, Mc(uy,s 2 uy,e), and
(b) vertical velocity variance, Mc(ws 2 we), in the mass-flux approach.
The total resolved slab-averaged values for and are alsow9u9 w9w9y

shown for reference (solid lines).

imum difference for the cloud core, which is about 10.4
K, where it should be noted that a positive buoyancy
excess is one of the criteria that defines the cloud core.

The role of mixing of dry environmental air with
cloudy air at either the lateral sides of the cloud or the
cloud top has been suggested to be a major mechanism
leading to cold downdrafts (Raymond and Blyth 1986;
Kain and Fritsch 1990; Taylor and Baker 1991; Jonas
1990; Blyth 1993). These downdrafts have been ob-
served both within and just outside the cloud. To eval-
uate the possible role of lateral mixing on the formation
of cold downdrafts we have computed the minimum
virtual potential temperature that can be obtained by
mixing cloudy and environmental air. It must be noted
that, although we refer to lateral mixing in this case,
the cloud ensemble includes clouds in all possible stag-
es, such as growing clouds which may mix with dry air
at their tops. For a mixed parcel that contains a mixture
of cloudy and environmental air with mean properties
cs and ce, respectively, the value of an arbitrary con-
served variable cm is given by

c 5 xc 1 (1 2 x)c ,m e s (36)

where x 5 me/(me 1 ms) is the mixing fraction, me and
ms are the masses of a parcel from the surrounding cloud
environment and cloud, respectively. If dry air is grad-
ually mixed with cloudy air some cooling will take place
by evaporation of liquid water (Randall 1980; Deardorff
1980; Duynkerke 1993).

The effect of evaporative cooling is depicted in Fig.
11. It shows how the virtual potential temperature of
the mixed parcel relative to the environment changes as
a function of the mixing fraction x. For the critical
mixing fraction x* all the liquid water is just evaporated
and the maximum amount of cooling is obtained. In the
absence of liquid water, the virtual potential temperature
can be considered to be a conserved variable, and the
effect of mixing on the mixed parcel is a linear function
of x as described by Eq. (36). Note that the mixing
fraction for which the mixed parcel is just neutrally
buoyant is even smaller than the critical mixing fraction,
and is about x ø 0.1 for the example shown.

Figure 12 shows the critical mixing fractions and the
associated minimum virtual potential temperature of a
mixed parcel with respect to the horizontal slab mean
as a function of height for the cloud and cloud core
decomposition. A mixing fraction x , 0.5 is needed to
evaporate all the cloud core liquid water. The critical
mixing fraction has a slightly smaller value for the
cloud–environment decomposition since the mean sam-
pled cloud liquid water content is lower than for the
cloud core. However, irrespective the kind of cloud de-
composition made the minimum virtual potential tem-
perature that can be obtained by lateral mixing is ap-
proximately the same. Furthermore, the minimum vir-
tual potential temperature is smaller than the horizontal
slab mean value at every height in the cloud layer. This
can be easily explained by the fact that cloudy air has
its primary origin in the subcloud layer, which has a
lower virtual potential temperature (uy ,subcloud) than the
cloud layer (z). For example, Fig. 12b also shows theuy

virtual potential temperature difference between a dry
undiluted parcel starting off from cloud base (z 5 500
m) and the mean vertical profile. After mixing between
air from the subcloud layer and the conditionally un-
stable layer the virtual potential temperature of a (just)
unsaturated mixed parcel (uy ,m) is given by the mixing
equation for conserved variables (36) such that uy ,m is
constrained by

u # u # u (z). (37)y ,subcloud y ,m y

In other words, Eq. (37) states that any unsaturated,
mixed air parcel that has been detrained from the cloud
will always have a smaller virtual potential temperature
than the horizontal slab mean value at the level where
it is detrained. It means that lateral mixing counteracts
the latent heat release in the cumulus cloud and even
causes the generation of cold air parcels that can sink
and subsequently generate turbulent kinetic energy in
the environment of the cumuli. A similar conclusion is
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FIG. 9. Conditionally sampling results. (a) The sampled area frac-
tion ss. (b) The vertical velocity ws. (c) The virtual potential tem-
perature, (d) the total water, and (e) the potential temperature excess
relative to the horizontal mean value. The line styles are according
to the legend shown in (a).

drawn by Rodts (2001) from an analysis of aircraft ob-
servations made above Florida.

Note that, if the mean potential temperature (Fig. 9e)
of the cloud is less than in the environment, this should
also be the case for the temperature. It implies that if
one measures a lower average temperature in a cumulus
cloud from an instrumented aircraft this may be due to
mixing and does not necessarily mean that the instru-
ment is affected by wetting and a subsequent evapo-
rative cooling.

Summarizing, the results presented in this section
suggest that the top-hat approach for the vertical ve-

locity tendency equation does not work as satisfactorily
as for a conserved variable. The reason why this is the
case is possibly best illustrated by Fig. 9. If one com-
pares the conditionally sampled total water contents for
different criteria, it is clear that they differ slightly, but
nevertheless they all differ systematically from the en-
vironment. Because qt is a conserved variable, mixing
causes qt to change according to (36) and as depicted
by the linear mixing line in Fig. 11. The sign of the
difference (qt,s 2 qt,e) is therefore conserved. However,
this is not the case for the virtual potential temperature
uy . Figure 11 shows that even for a small mixing frac-
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FIG. 10. The cloud downdraft area fraction divided by the total
cloud area fraction.

FIG. 11. Example of a mixing diagram showing how the virtual
potential temperature depends on the mixing fraction between cloudy
and dry environmental air. The diagram is computed from data at
1020 m for the cloud–environment decomposition.

FIG. 12. (a) The critical mixing fraction x
*

as function of height.
(b) The minimum virtual potential temperature of the mixed parcel
(uy,min) that can be obtained after mixing cloudy (core) and environ-
mental air. In addition, the virtual potential temperature of the cloud
downdrafts, and the virtual potential temperature of a rising undiluted
dry air parcel starting from z 5 500 m (dry-adiabatic ascent) are
shown. The horizontal slab mean virtual potential temperature has
been subtracted from all profiles. The line styles are according to the
legend.

tion, (uy ,s 2 uy ,e) becomes negative. Since the buoyancy
is the primary forcing term for the vertical velocity ten-
dency, a negative buoyancy will cause the cloud up-
drafts to slow down and to become either cloud or dry
negatively buoyant downdrafts.

6. Summary and conclusions

The dynamics of shallow cumulus have been inves-
tigated by means of a large eddy simulation based on
the BOMEX observations. By conditionally sampling
on the presence of liquid water as an indicator function
a distinction between clouds and environment could be
made, while additional sampling criteria were used to
select cloud downdrafts, cloud updrafts, and cloud cores
(a positive vertical velocity and buoyancy excess).

Prognostic equations for the conditionally sampled
vertical velocity, the mass flux, and the vertical velocity
variance in the mass-flux approach were derived by con-
ditionally sampling the prognostic vertical velocity
equation. From an analysis of the vertical velocity var-
iance budget the following dynamical picture emerges.
The vertical velocity variance in the cloud layer is pri-
marily driven by a positive buoyancy flux due to con-
densational heating in the clouds. The turbulent trans-
port term redistributes vertical velocity variance from
the lower to the upper part of the cloud layer. The pres-
sure term and the subgrid parameterization term are both
acting to destroy the vertical velocity variance. The pres-
sure redistributes vertical velocity into horizontal di-
rections, while the subgrid term removes momentum
from the resolved flow to feed turbulent subgrid eddies,
which have typical length scales that are smaller than
the grid size of the LES model. Since the equations for
vertical velocity variance and the mass flux arise from
the same vertical velocity equation their budgets appear
qualitatively similar. The mass-flux budgets for different
sampling criteria are not identical. This means that, for
example, if one develops a parameterization for the pres-
sure term to be used in a prognostic mass-flux equation,
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the precise formulation of it depends on the particular
definition one uses for the cloud.

Cloud downdrafts were found to occupy up to about
20% of the total cloud cover in the upper part of the
cloud. Because the cloud downdrafts have a negative
virtual potential temperature with respect to the hori-
zontal slab mean, this suggests that they were formed
by mixing with dry environmental air giving rise to
evaporative cooling. The occurence of downdrafts and
negatively buoyant parcels in the cloud has an important
implication for mass-flux modeling. Whereas the ver-
tical flux of a generic conserved variable c is well de-
scribed by the mass-flux approach, it gives less satis-
factory results for the virtual potential temperature flux
and vertical velocity variance. Therefore, to obtain these
second-order moments from a top-hat approach, it is
necessary to include the effect of the subplume pertur-
bations if one aims to get results that are identical to
the Reynolds-averaged ones (Petersen et al. 1999; Lap-
pen and Randall 2001b; Wang and Stevens 2000).

Although the cloud core decomposition provides the
best representation for the vertical velocity variance and
the vertical flux of conserved variables, it has two major
disadvantages. First, it cannot represent overshooting
clouds that rise due to their inertia despite a negative
buoyancy excess. Second, the cloud core area fraction
is not equal to the cloud area fraction that is needed for
the computation of the radiative transfer. These draw-
backs can be overcome by applying the cloud criterion
I2 (Table 1). Also, Lappen and Randall (2001b,c)
showed that the BOMEX case can be reasonably well
simulated by the updraft–downdraft decomposition.
However, the cloud fraction needs to be prognosed sep-
arately in this approach. The updraft–downdraft decom-
position also facilitates the simulation of convection in
the clear convective boundary layer and in stratocu-
mulus-topped boundary layers. The vertical velocity
budgets for these types of boundary layers have been
discussed by Young (1988b) and Schumann and Moeng
(1991a).

In the classical view a cumulus cloud is sketched as
a turbulent updraft surrounded by laminar compensating
subsidence motions. However, a somewhat more com-
plicated picture emerges from the LES results. First of
all, the vertical velocity variance, which is a typical
indicator of the turbulence intensity, is about as large
in the cloud as in the dry environment. Probably, a good
deal of the vertical velocity variance in the dry envi-
ronment can be attributed to gravity waves, which can
develop owing to the conditionally unstable stratifica-
tion in the cloud layer. The effect of the turbulent, sub-
plume motions in the dry environment of the cloud on
the vertical transport of quantities like total water or the
liquid water potential temperature is, however, very
small.

In a model in which the entrainment and detrainment
rates are prescribed and in which the continuity equation
for mass (23) is used to determine the mass flux, the

vertical mass-flux gradient is fully constrained. The ad-
vantage of any prognostic equation for the vertical ve-
locity in the mass-flux approach is that it links the ther-
modynamic state of the atmosphere to the dynamics by
the buoyancy term. Kain and Fritsch (1990) demon-
strated from a model simulation that the vertical mass-
flux profile depended on the ambient moisture content
and the convective available potential energy. As an
example, they found that, if the relative humidity in the
cloud layer was increased from 50% to 90%, the updraft
mass-flux maximum shifted from the lower part to the
upper part of the cloud layer. It is therefore tempting to
extend the study presented in this paper by exploring
the budgets for the conditionally sampled vertical ve-
locities for a wide variety of boundary conditions.
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