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1. Introduction

Turbulent transport plays a major role in changing the thermodynamic state of the
atmospheric boundary layer. Since the grid resolution of current general circula-
tion models (GCMs) and numerical weather prediction (NWP) models is generally
much larger than the typical turbulent eddy sizes in the boundary layer, the tenden-
cies due to turbulent transport need to be parameterized. In analogy with molecular
diffusion, one of the most simple means to model the vertical turbulent flux of an
arbitrary quantity χ is by assuming that the vertical flux (w′χ ′) is downgradient
and satisfies,

w′χ ′ = −Kχ

∂χ

∂z
. (1)

In general the eddy diffusion coefficient Kχ is a function of the typical length and
velocity scales of the turbulence field and varies with height z.

Measurements collected in the clear convective boundary layer (CBL) have
shown that for some quantities, for example the potential temperature, the flux
transport can be counter to its mean vertical gradient (Lenschow, 1970; Warner,
1971). In that case the downgradient formulation (1) will obviously lead to a wrong
sign of the potential temperature flux. To account for this effect, Priestley and
Swinbank (1947), Deardorff (1972), Troen and Mahrt (1986) and Holtslag and
Moeng (1991) proposed to include a countergradient correction term γχ in (1), viz.

w′χ ′ = −Kχ

(
∂χ

∂z
− γχ

)
. (2)

Note that this formulation differs only slightly from the one originally proposed by
Ertel (1942), who suggested that the potential temperature flux be constituted of
two terms, one proportional to the average lapse rate at the same height, the other
not. In a wider sense, the factor γχ can be regarded as a Kχ -adjustment factor, since
it includes corrections for all situations with the specified Kχ .

Because countergradient fluxes are thought to be indicative of boundary-layer
scale eddies, as opposed to small-scale eddies, such fluxes are often called non-
local fluxes. Using different approaches, Wyngaard and Weil (1991) and De Roode
et al. (2000) computed similar analytical expressions for γχ that include the vertical
velocity skewness as a relevant quantity. An expression for the potential temper-
ature flux presented by Zilitinkevich et al. (1999) involves not only the vertical
velocity skewness, but also the variances for the vertical velocity and the potential
temperature. Gryanik and Hartmann (2002) stressed that the skewness of the po-
tential temperature is a relevant quantity to consider as well. Holtslag and Moeng
(1991) used results from a large-eddy simulation (LES) to empirically derive ex-
pressions for the non-local closure term. Stevens (2000b) mathematically analyzed
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(2) to show which values for the non-local correction term lead to physically real-
istic results. A summary of countergradient expressions proposed in the literature
is given by Van Dop and Verver (2001).

For a smoke cloud case that combined radiative cooling at the top with a
surface heat flux, Cuijpers and Holtslag (1998) diagnosed countergradient fluxes
for some quantities. The smoke cloud was introduced by Bretherton et al. (1999)
to study the dynamics in the cloudy boundary layer in a simplified way. As in
stratocumulus clouds, the top of the smoke-cloud-topped boundary layer is cooled
by longwave radiation. Since there is no liquid water present in the smoke-cloud
layer, latent heat release effects are effectively switched off. Since the smoke cloud
can be considered as an intermediate case between the clear CBL and stratocumu-
lus, the results found by Cuijpers and Holtslag (1998) raise the question whether
countergradient fluxes may be present in stratocumulus as well.

It is not clear whether non-local transport in the CBL is a phenomenon that ap-
plies to any arbitrary conserved variable. Therefore we aim to study the occurrence
of countergradient fluxes for conserved quantities that have different entrainment-
to-surface-flux ratios. To this end, a clear convective boundary layer as well as
a stratocumulus-topped boundary layer (STBL) will be studied. The latter case
is based on observations collected in stratocumulus during the FIRE experiment
(Albrecht et al., 1988). For both cases vertical profiles of the countergradient cor-
rection term γχ will be presented for scalars with different entrainment to surface
flux ratios.

2. Experimental Set-Up

2.1. DESCRIPTION OF THE LARGE-EDDY SIMULATIONS

The results were obtained from the parallelized version of the IMAU/KNMI LES
model. The model has been used to study the clear convective boundary layer, and
the boundary layer topped by cumulus and stratocumulus (Cuijpers et al., 1996;
Siebesma and Cuijpers, 1995; VanZanten et al., 1999). A summary of the model
initialization for the CBL and the STBL cases is presented in Table I. The parallel
version of the LES model facilitates a simulation on a large horizontal domain,
namely 25.6 × 25.6 km2 (256 × 256 grid points). In the vertical direction the
vertical spacing was 20 m for the CBL and 15 m for the STBL, and the simulations
lasted 8 hr. In this study we will use the LES results from the last hour of the
simulation. For this period the velocity scale for the CBL case w∗ = 1.10 m s−1,
and the boundary-layer height, zi = 1000 m, and for the stratocumulus case, w∗ =
0.65 m s−1 and zi = 570 m, where (Deardorff, 1980)

w∗ ≡
(

2.5
g

θ0

∫ zi

0
w′θ ′

vdz

)1/3

. (3)
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Figure 1. Vertical flux profiles as a function of height during the last hour of the simulation. (a) The
virtual potential temperature flux, the potential temperature flux and the specific humidity flux in the
CBL. (b) The virtual potential temperature flux and (c) the specific humidity flux in stratocumulus.
The specific humidity flux has been multiplied by a factor 0.61θ to show its contribution to the virtual
potential temperature flux according to (4). Line styles are according to the legend.

Because of the factor 2.5, this w∗ reduces approximately to that defined for the
CBL using the surface buoyancy flux.

The surface fluxes in the CBL were set to values such that both the vertical
fluxes of the specific humidity (q) and the potential temperature (θ) contribute 50%
each to the virtual potential temperature flux, which is, to a good approximation,
given by

w′θ ′
v = w′θ ′ + 0.61θ w′q ′, (4)

where w is the vertical velocity and the virtual potential temperature θv is defined
as,

θv = θ(1 + 0.61q). (5)

In particular above sea surfaces one can observe such a large contribution of the
moisture flux to the buoyancy flux (Durand et al., 2000). As a result of the large
moisture flux contribution, the flux profiles for θ and θv differ significantly as
shown in Figure 1a.

Observations and LES studies (Stull, 1988; Lewellen and Lewellen, 1998; Van-
Zanten et al., 1999) show that the flux ratio for θv, rθv

,

rθv
= w′θ ′

vT

w′θ ′
v0

≈ −0.2, (6)

where the entrainment and surface fluxes are indicated by the subscripts T and 0,
respectively. For an inversion layer that is infinitesimally thin, the flux at the top of
the boundary layer can be expressed as (Lilly, 1968)

w′θ ′
vT = −we�θv, (7)
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TABLE I

Summary of the initialization values used for the large-eddy simulation of the
convective boundary layer (‘CBL’) and the nocturnal stratocumulus case. θl rep-
resents the liquid water potential temperature, qt the total specific humidity, and u

and v the horizontal wind components. The subscript ‘BL’ indicates a constant
value within the boundary layer, � the jump across the inversion, ‘GEO’ the
geostrophic wind velocity, d/dzFA the vertical gradient above the inversion in
the free atmosphere, and the subscript ‘0’ the value of the flux at the surface. The
variables ψ and φ represent the bottom-up and top-down scalar, respectively.

CBL Stratocumulus Units

psurf 1040.0 1012.5 [hPa]
dw
dz 0.0 −1 × 10−5 [s−1]

Inversion base 810.0 577.5 [m]

Inversion top 830.0 592.5 [m]

ugeo 0.001 3.4 [m s−1]

vgeo 0.0 −4.9 [m s−1]

uBL 0.001 3.4 [m s−1]

vBL 0.0 −4.9 [m s−1]

θlBL 305.0 287.5 [K]

qtBL 16.0 9.6 [g kg−1]

ψBL 1.0 1.0

φBL 1.0 1.0

�u 0.0 0.0 [m s−1]

�v 0.0 0.0 [m s−1]

�θl 5.0 12.0 [K]

�qt −14.0 −3.0 [g kg−1]

�ψ 0.0 0.0

�φ 0.1 0.1

(
dθl
dz

)FA 12.26 7.5 [K km−1]

(
dqt

dz
)FA 0.0 −3.0 [(g kg−1) km−1]

w′θ ′
l 0 0.025 0.0013 [m K s−1]

w′q′
t 0 1.366 × 10−1 1.09 × 10−2 [(g kg−1) (m s−1)]

w′ψ ′
0 0.001 0.001 [m s−1]

w′φ′
0 0.0 0.0 [m s−1]

w′θ ′
v0 0.053 0.0032 [m K s−1]

u∗ 0.01 0.18 [m s−1]
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where � represents the difference between the mean values across the inversion.
Combination of (6) and (7) yields for the entrainment rate we

we = −rθv

w′θ ′
v0

�θv

. (8)

In general, if there is a non-zero moisture flux in the boundary layer the flux ratios
for θ and θv will differ. Generic expressions that relate the flux ratio of both q and
θ to the flux ratio of θv are (De Roode et al., 2004)

rθ = rθv


1 + 0.61θ w′q ′

0

w′θ ′
0

1 + 0.61θ�q

�θ


 , rq = rθv


1 + w′θ ′

0

0.61θ w′q ′
0

1 + �θ

0.61θ�q


 . (9)

The stratocumulus case is based on observations made off the coast of Cali-
fornia during the FIRE field experiment (Hignett, 1991; Duynkerke and Hignett,
1993; Duynkerke and Teixeira, 2001). As part of an intercomparison study in the
framework of the European Project on Cloud Systems (EUROCS) the diurnal cycle
of this stratocumulus case has been simulated numerically by a variety of different
models ranging from single column models to LES models. In the present study
we only consider stratocumulus during the night implying that shortwave radiation
was not included. The vertical fluxes of the virtual potential temperature and the
total specific humidity (qt ) are shown in Figures 1b and c. The STBL is vertically
well-mixed during the entire simulation, and during the last hour the mean cloud
base height is at about 300 m.

2.2. ANALYSIS PROCEDURE

We have added two conserved, passive scalars to the simulations, ψ and φ, re-
spectively. We define conserved variables as quantities that are conserved under
adiabatic processes, regardless of the state of the saturation of the air parcel (Stull,
1988). To diagnose the fields of an arbitrary passive scalar χ we will make use
of the principle of superposition of variables (Wyngaard and Brost, 1984; Jonker
et al., 1999). The quantity χ is given by a linear superposition of two variables ψ

and φ, and an arbitrary constant c,

χ = aψ + bφ + c. (10)

The variable ψ has a non-zero flux at the surface, and is therefore referred to
as a ‘bottom-up’ scalar. In contrast, the ‘top-down’ scalar φ has no surface flux.
However, a turbulent flux is generated by entrainment at the top of the boundary
layer caused by a jump �ψ across the inversion, analogously to (7). Note that we
have multiplied the bottom-up and top-down fields with a constant, such that their
fluxes are set to unity, w′ψ ′

0 = 1 m s−1 and w′φ′
T = 1 m s−1. In the remainder
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Figure 2. Schematic showing the vertical profiles of the mean (χ) and the vertical flux (w′χ ′) of a
quantity with a flux ratio rχ = −0.25. The countergradient flux regime is bounded by the ‘zero-flux’
height zf and the ‘zero-gradient’ height zg .

of the paper we will use these fields. Vertical profiles of the bottom-up and top-
down fluxes are displayed in Figure 3. Note that the fluxes exhibit some curvature
effects and deviate slightly from a linear profile because the boundary-layer height
zi grows with time, i.e., dzi/dt �= 0 (Wyngaard and Brost, 1984).

After applying Reynolds decomposition on (10) and multiplication by w′ we
can express the vertical flux w′χ ′ as a function of the bottom-up and top-down
fluxes,

w′χ ′ = aw′ψ ′ + bw′φ′. (11)

By choosing appropriate values for a and b we can obtain any arbitrary flux ratio
rχ ,

rχ = w′χ ′
T

w′χ ′
0

= b

a
. (12)
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Vertical fluxes in the boundary layer will be counter to the mean vertical
gradient if the following criterion is satisfied,

w′χ ′ ∂χ

∂z
> 0. (13)

Figure 2 shows an example of a countergradient flux layer for rχ = −0.25. A
layer with countergradient fluxes for a quantity χ with flux ratio rχ exists, if there
is a level zf < zi where the vertical flux vanishes,

w′χ ′|z=zf
= 0, (14)

and which does not coincide with the height zg where its mean vertical gradient
equals zero,

∂χ

∂z
|z=zg

= 0. (15)

Note that by (10)–(12), the criterion for countergradient fluxes (13) is equivalent
to

(w′ψ ′ + rχw′φ′)

(
∂ψ

∂z
+ rχ

∂φ

∂z

)
> 0. (16)

Thus, the heights where (13) is satisfied can be obtained by applying (16) for any
arbitrary flux ratio rχ . Therefore, the results shown in Figures 3 and 4 are the basic
ingredients needed to diagnose the countergradient flux regime.

The zero-flux level can also be computed analytically, provided that the bound-
ary layer is in a quasi-steady state, meaning that the shape of the vertical profile for
the mean of χ is stationary. In that case its vertical flux is linear,

w′χ ′(z)
w′χ ′

0

= (1 − z/zi) + rχz/zi, (17)

and the height zf where w′χ ′|z=zf
= 0 is given by

zf (rχ )zi = 1

1 − rχ

. (18)

Because zf < zi , it follows from this expression that rχ < 0. Thus one of the
boundaries of the countergradient flux regime is given by the level where the mean
vertical flux changes sign, which implies that the entrainment and surface flux of
χ must have an opposite sign.
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3. The Countergradient Regime

3.1. CBL

Figure 5 shows that in the CBL countergradient fluxes are manifest for negative
flux ratios only. Indeed, it appears that the zero-flux level (i.e., where w′χ ′ = 0) is
a good predictor for the levels were one can expect countergradient fluxes. Obvi-
ously, there is no symmetry at rχ = 0. For quantities that have a very small positive
flux ratio (rχ << 1), the flux is countergradient in the upper part of the boundary
layer, although from the figure this is hard to distinguish by the eye. This finding
is consistent with the LES results reported by Wyngaard and Brost (1984). For all
other quantities that have a positive vertical flux throughout the boundary layer a
correction term that accounts for countergradient behaviour like γχ in (2) is not
necessary. This is for example the case for the moisture flux, provided that the spe-
cific humidity above the inversion is lower than in the boundary layer. The fluxes
for the virtual potential temperature and the potential temperature are counter to
their mean vertical gradients at different heights, which is due to their different
flux ratios.

It should be emphasized at this point that the shape of the diagram displayed in
Figure 5 does not depend on the values for the fluxes of moisture and potential
temperature. The flux ratio for the virtual potential temperature has, to a good
approximation, a constant value. If one would repeat the same CBL simulation
with other surface fluxes and inversion jumps for q and θ , but with the same virtual
potential temperature inversion jump and surface flux w′θ ′

v0, the passive scalars
would be advected in an identical way since the dynamics are fully determined by
the virtual potential temperature flux. Because moisture and potential temperature
appear to control the virtual potential temperature by its definition (5), one would
be tempted to refer to q and θ as dynamic quantities. However, the fields of the
latter two do not behave in another way as passive scalars. To put it even stronger,
the field of a passive scalar with a flux ratio rχ = rθ is equal to the field of θ up to
a constant and a linear factor; this implies that the correlation coefficient between
the fields χ and θ is equal to 1. Consequently, given rθ , the heights where w′θ ′ is
counter to the mean vertical gradient are predicted by Figure 5. It is interesting to
note that there is a direct analogy with the ocean mixed layer where observations
show that the temperature and salinity gradients on horizontal scales of 20 metres to
10 kilometres tend to compensate their effect on the density (Rudnick and Ferrari,
1999), as is the case for the moisture and the potential temperature in their effect
on the virtual potential temperature at the mesoscales of this CBL (De Roode et
al., 2004).
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Figure 5. The grey-shaded area indicates the levels where the mean vertical turbulent flux of χ is
counter the mean vertical gradient of χ in the CBL. The height is scaled by the boundary-layer depth
zi . The thick solid line represents the level where the vertical flux is zero, w′χ ′ = 0 (‘zero-flux
height’), and the thick dashed line indicates the level where the mean vertical gradient is zero,
∂χ/∂z = 0 (‘zero-gradient height’). The vertically pointing arrows indicate the flux ratios for the
potential temperature θ , virtual potential temperature θv and the specific humidity q.

3.2. STRATOCUMULUS

Figure 6 shows that stratocumulus also exhibit a countergradient regime, which
appears qualitatively similar to the one for the CBL. However, for the stratocu-
mulus case there is also a limited range of positive flux ratios where the flux is
countergradient, despite the fact that the vertical flux does not change sign. For
these instances the mean vertical gradient changes sign twice within the boundary
layer.

The picture that emerges from this study is that in the atmospheric CBL a layer
with countergradient fluxes exists, since the zero-flux and zero-gradient heights
generally do not coincide. Because the zero-flux height is associated with negative
flux ratios there is an asymmetry around rχ = 0, which implies that countergradient
fluxes can be expected to occur predominantly for situations where the surface flux
has an opposite sign to the entrainment flux.
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While the countergradient regime for the CBL is universal as long as the flux
ratio for the buoyancy rθv

≈ −0.2, this is not the case for the stratocumulus coun-
tergradient regime displayed in Figure 6. The turbulence field in stratocumulus
does not scale universally because the buoyancy flux, which is the primary produc-
tion source for turbulent kinetic energy, has typically a non-linear vertical profile
due to radiative and latent heat release effects as cloud liquid water droplets con-
densate or evaporate (Stevens, 2000a; Nicholls, 1984). Latent heat release effects
partly explain the enhancement of the buoyancy flux in the cloud layer (see Figure
1b), whereas the jump at the top of the cloud is due to a longwave radiative cooling
rate. The local minimum of the buoyancy flux at the top of the boundary layer
is due to entrainment of relatively warm and dry air from just above the inversion.
The value for the minimum buoyancy flux at the boundary-layer top is proportional
to the entrainment rate, which, in turn, is dependent on the buoyancy production
rate of turbulent kinetic energy in the boundary layer. Thus there is an implicit
relation between the entrainment rate and the buoyancy flux profile, which is not
yet fully understood (Stevens, 2002). Nonetheless, although the precise location of
the zero-gradient height for stratocumulus will in general depend on the detailed
structure of the turbulence field, it is not very likely that it will coincide with the
zero-flux height for all (negative) flux ratios, implying that countergradient fluxes
are a characteristic feature of boundary-layer convection.

4. The Countergradient Correction Term γχ

Holtslag and Moeng (1991) showed that in the interior of the CBL γθv
can be well

approximated by a constant value. To assess whether this value is appropriate for
quantities that have a different flux ratio, we will apply the linear superposition of
variables to diagnose vertical profiles of γχ for different flux ratios rχ .

In the following, we will use non-dimensional variables (indicated by hats),

ẑ ≡ z/zi, (19)

K̂χ ≡ Kχ/(w∗zi), (20)

γ̂χ ≡ γχzi/χ∗, (21)

(χ̂ , ψ̂, φ̂) ≡ (χ/χ∗, ψ/ψ∗, φ/φ∗), (22)

where

(χ∗, ψ∗, φ∗) ≡ (w′χ ′
0, w

′ψ ′
0, w

′φ′
T )/w∗. (23)

Note that we set w′χ ′
0 = 1 m s−1, such that χ∗ = ψ∗ = φ∗. Furthermore, we will

assume that in a quasi-stationary situation the flux profiles are linear. Substitution
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Figure 6. As in Figure 5 except for stratocumulus. The vertically pointing arrow indicates the flux
ratio for the specific humidity q. Due to the radiative cooling at the top, temperature variables are not
conserved and their flux ratios are therefore not indicated in this diagram.

of (17) into (2), and applying the linear superposition of variables (10), gives the
following expression for the non-dimensional countergradient factor γ̂χ

γ̂χ = 1 − ẑ + rχ ẑ

K̂χ

+
(

∂ψ̂

∂ẑ
+ rχ

∂φ̂

∂ẑ

)
. (24)

Equation (24) provides the vertical profile of γ̂χ for any arbitrary flux ratio and
eddy-diffusivity coefficient on the basis of just two variables, namely the vertical
gradients of the bottom-up and top-down scalars. To diagnose γ̂χ (z) for different
flux ratios, we will use the following vertical profile for the eddy diffusivity K̂χ ,

K̂χ (ẑ) = kẑ(1 − ẑ)2, (25)

with k = 0.675. This K̂χ profile was used in the study of Stevens (2000b), and was
derived on the basis of the vertical velocity variance and mean virtual potential
temperature vertical profiles in the CBL.

Figure 7a shows that in the bulk of the CBL the γ̂χ profile for rχ = −0.25,
which corresponds approximately to the flux ratio for the virtual potential temper-
ature, can be well approximated by a constant value, γ̂χ = 5. However, for other
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Figure 7. Vertical profiles of the non-dimensionalized countergradient factor γ̂χ for different flux
ratios rχ . (a) The CBL and (b) stratocumulus. The line styles are according to the legend.



COUNTERGRADIENT FLUXES OF CONSERVED VARIABLES 193

flux ratios γ̂χ varies considerably with height. This is also the case for the flux
ratios presented for the stratocumulus case. At the top of both boundary layers, |γ̂χ |
increases for increasing |rχ |. This behaviour can be understood from the structure
of Equation (24), which predicts that for |rχ | >> 1,

γ̂χ = rχ

(
ẑ

K̂χ

+ ∂φ̂

∂ẑ

)
. (26)

Noting that the vertical gradient of the top-down scalar is maximum at the top of
the boundary layer, a likely physical interpretation of this solution is that for large
absolute values of the flux ratio the countergradient correction term must represent
the effect of the entrainment flux at the boundary-layer top. Lastly, it should be
remarked that the countergradient correction term does not vanish for quantities
whose flux is downgradient at all heights, as is clear from the examples shown for
rχ = 1.

In summary, our diagnosis suggests that a fixed eddy-diffusivity profile based
on the mean virtual potential temperature vertical profile is not appropriate for
scalars that have a different flux ratio. Moreover, our findings suggest that eddy
diffusivity profiles should be designed such that they better take into account the
effect of entrainment. We believe that the application of the principle of linear
superposition of variables is a helpful tool for this purpose, since the fields of just
one bottom-up and one top-down scalar are sufficient to reconstruct the fields of
any arbitrary conserved variable. This approach therefore facilitates the validation
of a parameterization for the widest range of flux ratios.

5. Discussion

Large-eddy simulations of a clear convective boundary layer and a stratocumulus-
topped boundary layer are used to investigate for which entrainment-to-surface-
flux ratio the mean vertical flux of an arbitrary conserved quantity is counter to the
mean vertical gradient. In general, a layer with countergradient fluxes is bounded
by the level where the vertical flux of a quantity χ changes sign and the level
where the vertical gradient of its mean value vanishes. Typically, these levels do not
coincide. By means of a linear superposition of the top-down and the bottom-up
scalar fields we have computed the zero-flux and zero-gradient levels as a function
of the entrainment to surface flux ratio. Since the zero-flux height is associated with
a vertical turbulent flux that changes sign somewhere within the boundary layer,
the regime where the flux is counter to the mean vertical gradient of the quantity is
particularly manifest for negative entrainment to surface flux ratios. In the CBL, the
depth of the layer where countergradient fluxes can be expected is most significant
for quantities that have a flux ratio around rχ = −0.25, which is close to the
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flux ratio for buoyancy. As a consequence, countergradient flux corrections for
quantities that have a positive flux ratio, like moisture, are not necessary.

A good qualitative correspondence between the countergradient regimes for
the CBL and stratocumulus is found. However, for stratocumulus countergradient
fluxes are also found for a limited range of positive flux ratios despite the fact
that the vertical flux does not change sign. In this case the mean vertical gradient
changes sign twice within the boundary layer.

In the clear CBL discussed herein the moisture flux contributes significantly to
the virtual potential temperature flux. The flux ratio for the potential temperature
is rθ ≈ −1.2. The larger the contribution of the moisture flux to the buoyancy
flux, the more the buoyancy and the potential temperature fluxes will deviate. For
parameterizations like (2) this means that in general the buoyancy and the potential
temperature fluxes need a different treatment.

Lastly, it is worth noting that countergradient fluxes have an important physical
meaning. In the prognostic variance equation,

∂χ ′2

∂t
= −2w′χ ′ ∂χ

∂z
− ∂w′χ ′χ ′

∂z
− 2εχ, (27)

the production term is given by the first term on the right-hand side of (27), and εχ

represents the dissipation of variance. Therefore, in cases where the flux is counter
to the mean vertical gradient the production term becomes negative and will act
to consume variance. From this perspective it is interesting to note that studies by
Jonker et al. (1999) and De Roode et al. (2004) showed that quantities in the CBL
that have a flux ratio close to −0.25 have length scales that are on the order of the
boundary-layer depth, whereas quantities that have a flux ratio that significantly
deviates from this number the length scales were found to be much larger.
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