
VRLAB@GRS
A users guide

Introduction
The VRLAB, originally an EWI visualisation facility, was refurbished in 2005 with an NCF/NWO
grant and the financial support of EWI and TNW faculties of the TU Delft. Since then there has
been tight collaboration between the two faculties in the exploitation of the lab.

When the TU Delft decided to centralise it’s ICT server a few years later, it soon became apparent
that the centralised servers had the disadvantage of having high latency on the network
connections, mainly caused by the physical distance between workstations and the servers a few
kilometers away in the data center. The visualisation machines in the lab have therefore always
been connected to a local high speed network. Over time our desktop workstation have become
more and more visualisation and software development workstations too. Firstly as a result of
technological progress in GPU’s. Secondly because of the increased requirements in performance.
To take advantage of the local high speed, low latency VRLAB network, our desktop workstations
and servers were soon connected to the VRLAB network, instead of being connected to
centralised servers in the data center. This situation is still the same today for users of VRLAB
connected machines. Although network technology has progressed enough to get 1 GB/s
connections to almost everyone, latency, being determined mostly by the speed at which the signal
goes through our optical fibers and network equipment, is still our main performance killer on
connections to the data center.

Former VRLAB at TNW

The specialised high performance ICT environment the VRLAB gives us, is one the cornerstones
needed for outstanding research. Due to the TU Delft policy that centralisation and standardisation
are not a goal in itself but a tool, there is plenty of room for special infrastructures like HPC clusters
and facilities like the VRLAB, keeping the door open for scientific research that otherwise would be
impossible. The credo is ‘Standardisation where possible, specialisation where needed’ is paying
of here. The current VRLAB implementation is a textbook example where standard solutions are
used to implement a specialised solution for our needs. Based on standard protocols such as NFS,
Kerberos, ethernet and Infiniband we have created a high performance environment that
outperforms centralised solutions on nearly all aspects. 

Who is it for?
The VRLAB network is targeted at users of High Performance Computing facilities. Where scientist
traditionally ran their jobs and visualisations on centralised computing facilities, such as the
supercomputer at SurfSara in Amsterdam, using their workstation merely as a terminal, computing
and visualisation power are shifting towards the desktop.

Although supercomputers will always be needed to do the largest of computations and analyses, it
is now possible to do visualisation, data analysis and computations on local machines, given a
suitable network and server infrastructure around them.

On the vrlab computations can be done on local many-core- and/or GPU machines. This area of
computational power, positioned between single desktop machines and supercomputers, is the
part of the computational spectrum the VRLAB is at its best and performs better than centralised
computational cluster, the latter being being sub-optimal for interactive tasks as software
development and visualisation. Typical applications used on the VRLAB are LES simulations,
processing of big data such as supercomputer results or experiment measurements (e.g.
processing of radar data) and visualisation. Due to the low network latency and high speed
connections between machines (up to 40Gb/s) and the possibility to use substantial local GPU and
CPU power in the network, the VRLAB is also an excellent environment to do software
development and testing.

For many (student) projects the VRLAB is powerful enough to run simulations and create
visualisations that are not possible on a single desktop machine and would otherwise require
access to a supercomputer or cluster.

One the the first applications in the VRLAB were 3D data visualisations on 3D data sets. In those
days, custom written applications utilising OpenGL were required to create 3D views of dataset.
Today, many general purpose applications are available to do this A few examples can be viewed
on our Youtube channel (search for ‘AtmosPhysDelft’). These modern tools require none or very
little programming by users. In the physical lab at EWI there is a large stereo screen (similar to 3D
screens you know from the cinema) that is available to all to look at data in stereo on a large
screen. In many cases, depending

Access and Apps

The lab network is suitable for Unix and Unix-based systems like Linux and MacOS clients. For
mainly technical reasons (and some policies) we have our own local authentication and
authorisation servers in the VRLAB network that is not connected to the central TU Delft system.
Users need a local account to access resources on the VRLAB. Authentication is done against a

Kerberos server with authorization done from an LDAP system utilising industry standard,
opensource backends. The entire local authentication and authorisation system is redundant for
fault tolerance with servers at EWI and CiTG.
 The lab is standardised on one Linux distribution (Currently OpenSuSE 42.1 Leap) for reasons of
maintainability and uniformity. As a result, users can use any (linux) workstation connected to the
VRLAB and have all their files and software available while reducing the administrative effort
needed to maintain the VRLAB at the same time. Support for MacOS clients is a bit limited.
Although Macs can be used to access resources on the VRLAB, things like automatic software
installation and automatic mounting of network storage are not available. Support for Windows
systems is non-existent, other than providing ssh access to Linux systems connected to the
VRLAB and file up- and download services via ssh-based protocols like scp, sftp, rsync. via our
bastion host.

Linux machines
Linux machines are maintained and ready to use. A complete
software stack is available on all machines. Basically
everything that is offered in the linux distribution is installed all
machines, augmented with tools like Matlab, Intel Fortran,
Paraview and many other tools. The philosophy is that users do
not need to install software themselves, as that would make
each machine an unique incarnation of Linux tools. Instead
software installs are done centrally, so that all machines have
the same tools available in the same version. Obviously this is
also much more efficient than installing tools on each
workstation individually. The software packages that are not
available in the linux distribution, are available by loading them
via the ‘module’ command. (See side bar). This way we can
have multiple versions of many packages available, without
conflicts. The ‘module load’ command basically manipulates the

GNU Module

MODULE AVAIL
LISTS AVAILABLE MODULES

MODULE LIST
LISTS LOADED MODULES

MODULE SEARCH <ARG>
 SEARCH FOR A MODULE
MODULE LOAD <NAME>
LOAD THE NAMED MODULE

MODULE UNLOAD <NAME> 
UNLOAD THE NAMED MODULE

Share Mountpoint name of server Usage

home /home/<logonname> nfs1 Your private home folder.

labdata /net/labdata/<logonname> nfs4 Bulk storage for data

scratch /net/scratch/<logonname> nfs4 Temporary storage

shared-public /net/shared-public/… nfs4 Shared data.

shared-staff /net/shared-staff/.., nfs4 Shared data with limited
group access.

users environment by adding paths to environment variables such as ‘PATH’,
‘LD_LIBRARY_PATH” etc. It is possible that a module depends on other modules and load these
dependencies automatically.

MacOS machines
On the MacOS machine, things are slightly different. At the moment there is no support for the
module command, neither is there a network repository where application and tools are available.
This means that all applications on a Mac (such as Matlab, Paraview) need to be installed by the
user manually. Most applications are available for download (some only after authentication as a
TU Delft employee) from the Internet. The Intel Fortran compile is not licensed on MacOS and not
available.

Remote logon
Remote logon is possible from every internet connected machine via ssh. The external address of
our bastion host is “bastion-grs.vrlab.tudelft.nl" On this machine, all disks are mounted, to allow
access to all your files. However, there is no software installed on the bastion machine. In order to
run applications, you need to logon from the bastion, using ssh, to your desktop machine or one of
the public machines available. 

http://bastion-grs.vrlab.tudelft.nl

Storage facilities
Our policy is that all data is stored on our servers and not on local disks. There are many reasons
to enforce this, but the most important one is that the single disks in workstation and laptops will
fail at some point and that would cause loss of data and possibly loss of careers if the data was
important.

Available storage
We have several servers in the VRLAB, providing a total of 70TB of storage (sept. 2016). For
performance reasons, each server has a dedicated function. Currently we have 2 storage servers
providing storage The machines provide the following shares:

Some of the services can temporarily run on another servers due to maintenance work. On Linux
the mounts are automatic and end users won’t notice this. Mac users however, need to temporarily
connect to the replacement machine manually.

home
Home folders are on a separate server with high protection. The reason behind that, keys and
other sensitive files are stored in your home folder. All traffic to and from the server is encrypted
using strong encryption. Use this folder for anything that is important, such as private files, source
code and texts for publications. Home is not suitable for storing data. Home is not guaranteed to be
available in jobs run on the grid.

labdata
Labdata is our big storage server, which can be expanded tot
Petabyte sizes if the need arises. This is the place to store your
data from any source. This folder can be made accessible to your
supervisor if you are a student.

scratch
Scratch is for temporary data. Use for anything that you don’t
need to keep. Files that are older than a couple of weeks are
automatically deleted from this share. A typical use case is a
simulation run that produces lots of files, of which you only need
to keep a few. Once the simulation is finished, you copy the files
you need from scratch to ‘labdata’. The left-overs are
automatically removed after a while. The retention period is
roughly 60 days.

shared-public
Shared-public is for datasets that need to be shared with multiple
people (labdata is private). Typical use is measurement data or
simulation results. A toplevel directory, can be requested. One
user will get read/write access to that folder, while the rest of our

ACCESS FROM A MAC

On the Mac, the shares are
not automatically mounted.
To mount a share manually,
press CMD+k in the Finder.
For the url, enter the full
name of the server. For
example, something like

afp://nfs4.grs.vrlab.tudelft.nl

After entering your
credentials, a Finder
window will open, showing
the shares that are available
to you. On the Mac, shares
are mounted below
‘/Volumes/…’.

afp://nfs4.grs.vrlab.tudelft.nl
afp://nfs4.grs.vrlab.tudelft.nl

users get read-only access. Shared-public is not suitable for data that needs to be shielded from
some people.

shared-staff
Shared-staff is similar to shared-public, except for the access rules. A folder can be created, to
which a given group of users will have full read/write access, while any other user won’t have
access at all. This share is suitable for shared projects that need to be kept secret, such as exams,
confidential papers etc.

Using the Grid

Introduction
The VRLAB is in essence a grid network, where jobs can run in many places. At the moment we
have a few dedicated job processors, but the goal is to configure the network in such a way, that
idle workstation can also run jobs, for example at night or in the weekend. The grid consists solely
of Linux machines. Mac users need to logon to a linux machine, in order to submit jobs and use the
grid.

Currently we have around 100 CPU threads and 8 GPU’s available. When users submit jobs to the
grid, they do not specify on which machine the job should go. The task of selection the proper
machine is dedicated to the grid scheduler. The scheduler makes it’s selection based on the
resources requested by the user. A job specification needs to include:

• Number of CPU threads needed
• Number of GPU’s needed
• The amount of RAM memory needed
• The amount of time needed to run the job

It is important to set reasonable values for these resources, otherwise it get take a long time before
a job is scheduled to run and it may keep resources occupied that could be made available for
other jobs. For example, if you set the time needed to 24 hours and the jobs takes 2 hours, it will
never get scheduled in a slot of 12 hours available on a cpu on a workstation.

Submitting a job
Jobs should not be started in your home folder, but should run from /net/labdata or /net/scratch. A
good strategy can be to run the job from scratch and copy the data the you want to keep to /net/
labdata. As scratch gets cleaned automatically, this will make sure the leftovers of a job are
automatically removed. You can, of course, run directly from labdata and do any cleanup yourself.
Jobs should never be run from your home folder, as home is too slow for this and may be
unavailable on the job processor due to expired kerberos tickets.

To run a job, you will need to small (bash) shell script that runs the job. In the example below, I’ll
use ‘/net/labdata/erwin’, but of course you will need to replace that with your own labdata folder.
The first small example uses the ‘bc’ command to compute 40964096. The script could look like this:

#!/bin/bash
#$ -l h_vmem=1G
#$ -l h_rt=120

echo 4096^4096|bc

Save this in a file called “RUN” and submit it with

qsub RUN

The default value for the number of threads is 1. The default number of GPU’s is zero, so for this
single threaded job that can’t use multiple cpu’s or gpu’s, we can leave them unspecified. With the
‘qstat' command you can see the status of your job. The ‘qdel’ command can delete jobs, if
needed.

erwin@goofy:/net/labdata/erwin/TEST> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 23321 0.55617 job.015 stephan r 01/17/2017 10:50:19 cirrus-b@cirrus-b.grs.vrlab.tu 8
 23393 0.55617 job.014 stephan r 01/18/2017 10:54:49 cirrus-a@cirrus-a.grs.vrlab.tu 8
 23625 0.45617 RUN erwin qw 01/25/2017 09:58:57 1
 23394 0.00000 job.016 stephan hqw 01/18/2017 10:56:42 8
 23427 0.00000 Job520 patrick hqw 01/18/2017 18:00:58 1
 23428 0.00000 Job320 patrick hqw 01/18/2017 18:02:57 1

 23430 0.00000 Job220 patrick hqw 01/18/2017 18:03:54 1

The job will, by default, output a job output file (RUN.oxxxxx) and and error file (RUN.exxxxx)
where xxxxx is the job id that was assigned by the scheduler. You can override the names of these
file if you want.

