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ABSTRACT

Large-eddy simulation (LES) models are widely used to study atmospheric turbulence. The effects of small-

scale motions that cannot be resolved need to be modeled by a subfilter-scale (SFS) model. The SFS contri-

bution to the turbulent fluxes is typically significant in the surface layer. This study presents analytical solutions

of the classical Smagorinsky SFS turbulent kinetic energy (TKE)model including a buoyancy flux contribution.

Both a constant length scale and a stability-dependent one as proposed byDeardorff are considered. Analytical

expressions for the mixing functions are derived and Monin–Obukhov similarity relations that are implicitly

imposed by the SFS TKEmodel are diagnosed. For neutral and weakly stable conditions, observations indicate

that the turbulent Prandtl number (PrT) is close to unity. However, based on observations in the convective

boundary layer, a lower value for PrT is often applied in LES models. As a lower Prandtl number promotes a

stronger mixing of heat, this may cause excessive mixing, which is quantified from a direct comparison of the

mixing function as imposed by the SFS TKE model with empirical fits from field observations. For a strong

stability, the diagnosedmixing functions for bothmomentum and heat are larger than observed. The problem of

excessive mixing will be enhanced for anisotropic grids. The findings are also relevant for high-resolution nu-

merical weather prediction models that use a Smagorinsky-type TKE closure.

1. Introduction

The large-eddy simulation (LES) modeling technique

as proposed by Lilly (1967) is currently widely used to

study atmospheric turbulence. In general, LES studies

have greatly enhanced our understanding of the turbu-

lence structure of the atmospheric boundary layer

(Moeng 1984; Mason 1989; Kosović and Curry 2000;

Fedorovich et al. 2004). LES results have provided the

means to improve parameterizations of turbulent trans-

port for use in large-scale weather forecast and climate

models (e.g., Holtslag and Moeng 1991; Siebesma and

Cuijpers 1995; Lock 1998). The inclusion of moist ther-

modynamics (Deardorff 1980) has allowed LES models

to be applied to cloud-topped boundary layers (De

Roode et al. 2016) and the ever-increasing computational

power has enabled LES of deep convection (Böing et al.

2012; Khairoutdinov and Emanuel 2013).

AnLESmodel solves the filtered budget equations for

momentum, heat, moisture, and passive scalars down to

scales as fine as the gridmesh size. The transport by

eddies with sizes smaller than the grid size, the so-called

subgrid- or subfilter-scale (SFS) eddies, needs to be

parameterized. Nieuwstadt et al. (1993) compared re-

sults as obtained from four different LES models with

observations collected in a buoyancy-driven convective

boundary layer (CBL). Despite the fact that a rather

coarse grid resolution was used, with 160 and 60m in

the horizontal and vertical directions, respectively, a

good agreement between the modeling results and ob-

servations was found. The simulated boundary layer

obtained a final depth of about 1600m. Since the hori-

zontal size of the dominant eddies is about the same as

the boundary layer depth (Young 1987), the SFS con-

tribution to the total fluxes was found to be less than

about 10%, except for the surface layer and the en-

trainment zone near the top of the mixed layer. Fur-

thermore, the results were found to be rather insensitive

to details regarding the numerics, withmost of the rather

small differences between the models being attributable

to differences in the SFS scheme.

The applicability of LES models to a wide range of

turbulence regimes in the atmosphere enables the
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nesting of an LES model in a numerical weather pre-

diction (NWP)model (Moeng et al. 2007; Neggers et al.

2012; Schalkwijk et al. 2015) or to operate the NWP as

an LESmodel (Dipankar et al. 2015). Such an approach

could arguably be beneficial for the stable boundary

layer which remains rather poorly represented in NWP

models (Storm et al. 2009; Banta et al. 2013). An ac-

curate prediction of the boundary layer depth and the

location of the low-level jet near its top are actually

vital for the assessment of the expected wind power

from wind turbines (Abkar et al. 2015; Lu and Porté-
Agel 2011).

The embedding of LES in an NWP (Schalkwijk et al.

2015) inevitably includes regime transitions associated

with the diurnal forcing by solar radiation (Holtslag

et al. 2013). In fact, if one aims to simulate the diurnal

cycle two opposing constraints emerge. On the one

hand, the domain size should be large enough to allow

for the development of mesoscale fluctuations of quan-

tities like water vapor that develop during daytime

convective conditions (Jonker et al. 1999; De Roode

et al. 2004; Honnert et al. 2011) or to permit the for-

mation of deep convective clouds (Böing et al. 2012;

Khairoutdinov and Emanuel 2013). On the other hand,

the grid size should be sufficiently small to capture the

small turbulent eddy sizes typically observed during

nocturnal stably stratified conditions (Mahrt 2014).

Despite the promising effects of integrating LES in

NWP models, the reliability of LES itself in (strongly)

stratified conditions is not without debate. The LES

results of the stable boundary layer may depend on the

specific SFS closure or the grid resolution used (van

Stratum and Stevens 2015; Gibbs and Fedorovich 2016).

Beare et al. (2006) performed sensitivity experiments

with different grid sizes for the first Global Energy and

Water Cycle Experiment (GEWEX) Atmospheric

Boundary Layer Study (GABLS1) stable boundary

layer (SBL) case and argued that a grid size of 3.125m is

required to obtain convergence of the modeling results.

Sullivan et al. (2016) found that even for a further grid

refinement down to a size of 39 cm the simulation results

still showed sensitivity to resolution, with most notably

the boundary layer depth becoming shallower for a

higher resolution. Suppose that computational re-

sources allow us to apply 1000 grid points in each hori-

zontal direction. In that case a grid resolution of about

3m as proposed by Beare et al. (2006) for the stable

boundary layer will then enable a horizontal domain size

of 33 3 km2. Such a domain is clearly too small to allow

for the development of mesoscale fluctuations in the

convective boundary layer.

As an illustration, Fig. 1 shows results of the GABLS1

SBL case as obtained from the Dutch Atmospheric LES

(DALES) model (Heus et al. 2010) for isotropic grids

with varying mesh sizes in the range between 3.125 and

25m. We find that the SFS turbulent kinetic energy

(TKE) depends strongly on the grid size. The runs

with a grid size $ 6.25m exhibit a very different be-

havior of the resolved TKE as compared to the high-

resolution run. In the run with the coarsest resolution

there is no resolved TKE, and in the runs that used

gridmesh sizes of 6.25 and 12.5m, respectively, the re-

solved TKE is strongly time dependent, with in-

termittent periods of almost no resolved turbulence.

Figure 2 shows time-mean results during the eighth

hour of the simulation. During this period the flow in

the simulation that used a gridmesh size of 6.25m has

laminarized, which means that the resolved turbulence

has vanished and that the transport is mainly due to

parameterized SFS eddy diffusion. By contrast, in the

high-resolution run the SFS fluxes dominate the results

only in the surface layer. Because the SFS TKE model

controls the dissipation of resolved TKE, the disap-

pearance of resolved motions in the coarse-resolution

runs strongly hints at the SFS dissipation of resolved

TKE becoming too strong.

FIG. 1. Time series of (a) the resolved and (b) the SFS TKE e as

obtained from four large-eddy simulations of the GABLS1 stable

boundary layer case. The constant length scale lD was used in the

SFS TKE equation and the runs were performed with an isotropic

grid, with sizes of lD 5 3.125, 6.25, 12.5, and 25m, respectively. The

results shown for those cases were obtained at a height of 35.94,

34.38, 31.25, and 37.5m, respectively. The line styles are according

to the legend.
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The SFS TKE model captures the effect of relatively

small eddies to the total vertical transport of heat,

moisture, and momentum. For well-resolved turbu-

lence this SFS contribution should ideally be smaller

than about 10%. However, near the surface, and in the

vicinity of thermal inversion layers where the temper-

ature strongly increases across a relatively thin layer,

the SFS fluxes may dominate. In general, LES models

fail to capture observed flux–gradient relations for the

horizontal wind speed in the near-surface layer cor-

rectly (Shao et al. 2013; Mason and Thomson 1992;

Khanna and Brasseur 1997; Brasseur and Wei 2010;

Maronga 2014). These flux–gradient relations are part

of a family of functions that relate dimensionless flow

properties in the surface layer to a dimensionless

height parameter, a description that is widely known

as the Monin–Obukhov (MO) similarity theory. Be-

cause the lowest few grid levels are always quite

strongly affected by the SFS model we will diagnose

MO similarity relations that are implicitly imposed

by the SFS TKE model. To this end we will consider

the special case in which the SFS fluxes dominate the

total transport, a situation that closely mimics the

flow conditions in the lowest LES model layers near

the ground surface. By a comparison with mixing

functions that have been derived on the basis of field

observations, we will determine the conditions for

which excessive SFS mixing will occur. Our philoso-

phy follows Baas et al. (2008), who investigated the

scaling behavior of a TKE closure model used in a

regional weather forecast model for stably stratified

conditions.

We will derive analytical solutions for the

Smagorinsky–Lilly-type SFS TKE model, which

includes a buoyancy flux, mechanical shear pro-

duction, and a viscous dissipation term (Lilly 1962;

Smagorinsky 1963; Deardorff 1980; Mason 1989).

Such SFS TKE models are widely used in LES models

(Khairoutdinov and Randall 2003; Heus et al. 2010)

and in some NWP models, such as the Weather Re-

search and Forecasting Model (Skamarock et al. 2008;

Talbot et al. 2012) or the Met Office Unified Model

(Boutle et al. 2014; Efstathiou and Beare 2015). The

SFS TKE models may differ in terms of the constants

used or the length scale formulation. Our study in-

cludes analytical results as obtained for a constant

length scale lD, in addition to a length scale lM that was

designed by Mason and Thomson (1992) to match

between the near-surface region and the interior,

and a stability-dependent length scale lD as proposed

by Deardorff (1980). The latter length scale is used by

Raasch and Schröter (2001) and Sullivan et al. (2003)

and has been critically discussed by Schumann (1991)

and Gibbs and Fedorovich (2016). It will be explained

that lD and lM do both depend on the mesh grid size lD.

On the other hand, in the surface layer the relevant

length scales of the turbulent eddies are the height

above the surface z and the Monin–Obukhov stability

length scale L. Our analysis will show that for a strong

stability, the mixing functions for both heat and mo-

mentum as imposed by the SFS Smagorinsky TKE

model tend to be larger than the ones derived from

observations. It will also be argued that if the turbu-

lent Prandtl number applied in the LESmodel is based

on the CBL, then for stable conditions this will yield

excessive mixing of heat.

The organization of the paper is as follows. Section 2

summarizes the LES equations, and section 3 presents

solutions for the SFS TKE equation for stably stratified

conditions. Section 4 gives a brief overview of MO re-

lations and prepares the reader for section 5, which

presents mixing functions and MO relations imposed by

the SFS TKE model. From a comparison of these ana-

lytical results with the empirical MO relations we de-

termine the conditions for which one can expect

excessive mixing by the SFS TKE model. The last sec-

tion summarizes the main findings.

FIG. 2. Vertical profiles of the hourly mean SFS and resolved

and total flux of u0w0 for (a) lD 5 3:125 and (b) lD 5 6:25m during

the eighth hour of the simulations for the GABLS1 stable

boundary layer case. The constant length scale lDwas used in the

SFS TKE equation. The line styles are according to the legend.

In (b) the total and SFS fluxes are almost identical. The gray-

filled area indicates the regime where the SFS flux dominates the

total flux.

MAY 2017 DE ROODE ET AL . 1497



2. Formulation of the LES model

Here we will briefly summarize the governing LES

equations that apply to an atmosphere free of clouds.

For a detailed description of an LESmodel like DALES

we refer the reader to Heus et al. (2010) and Böing
(2014), who explain the updated anelastic version for

simulations of deep convection. We note that the model

is freely available for downloading.

a. Prognostic budget equations

LES models solve the budget equations for filtered

variables including momentum and thermodynamic

state variables, such as heat, entropy, or the total water

specific humidity. After application of the LES filter the

prognostic equation for an arbitrary scalar u can be

written as

›~u
›t

1 ~u
j

›~u
›x

j

52
›u00

j u
00e

›x
j

1 ~Su , (1)

with t the time, and the velocity vector components

(u1, u2, u3)5 (u, y, w) in the (x, y, z) direction, re-

spectively. In the absence of clouds u 2 fu, qg, with u

representing the potential temperature and q the water

vapor specific humidity. A tilde indicates the filtered

mean value and the SFS scalar flux is denoted by

u00
j u

00e [guju2 euj~u.
The Boussinesq form of the filtered momentum

equation reads

›eu
i

›t
1 eu

j

›eu
i

›x
j

5
g

u
0

d
i3
(~u

y
2 u

y
)2

›p

›x
i

2
›t

ij

›x
j

1 ~S
ui
, (2)

where g is the gravitational acceleration; u0 the reference

state virtual potential temperature; dij theKronecker-delta

function; the virtual potential temperature is defined as

u
y
[ u(11 «

I
q) , (3)

with «I ’ 0:608 a thermodynamic constant; p is the

modified pressure (Deardorff 1973); and an overbar is

used to indicate a horizontal slab-mean value. For

compact notation, we have included the mean horizon-

tal pressure gradient and the Coriolis force in the source

function Sui. The deviatoric part of the SFS momentum

flux tij is computed from Deardorff (1980):

t
ij
[gu

i
u
j
2 eu

i
eu
j
2

2

3
d
ij
~e52K

m

 
›~u

j

›x
i

1
›~u

i

›x
j

!
(4)

and

u00
j u

00e 52K
h

›~u
›x

j

. (5)

The factor (2/3)dij~e that is subtracted in (4) does not arise

from the filtering procedure. To compensate it has been

added to the filtered pressure term to give the modified

pressure. Here Km and Kh represent the eddy viscosity

for momentum and the eddy diffusivity for the ther-

modynamic scalars, respectively. In a TKE closure ap-

proach both are taken proportionally to the square root

of the SFS TKE (e),

K
m
5 c

m
l~e1/2 and (6a)

K
h
5 c

h
l~e1/2 , (6b)

with l the characteristic length scale of the SFS turbu-

lent eddies and cm and ch proportionality constants. By

analogy with the molecular Prandtl number, which is

defined as the ratio of the viscosity to the thermal dif-

fusivity, the ratio Km/Kh can be interpreted as a turbu-

lent SFS Prandtl number,

Pr
T
5

K
m

K
h

5
c
m

c
h

. (7)

The budget equation for ~e reads

›~e

›t
1 ~u

j

›~e

›x
j

5
g

u
0

w00u00ye 2 u00
i u

00
j
e ›~u

i

›x
j

2
›u00

j e
e
›x

j

2
1

r
0

›u00
j p

00e
›x

j

2 « ,

(8)

with r0 a reference density and p the pressure. The SFS

flux u00
i u

00
j
e is computed as tij following (4), and (5) is used

to calculate the SFS fluxes of the u and q, which in turn

are used to calculate the SFS buoyancy flux. The total

turbulent transport term is computed following a

downgradient diffusion approach,

u00
j e
e 1

u00
j p

00e
r
0

522K
m

›~e

›x
j

, (9)

and the viscous dissipation of e by molecular viscosity

« is calculated as

«5 c
«

~e3/2

l
, (10)

with c« a proportionality constant.

In the remainder of the text we will omit the tildes.

With this notation the parameterized equation for the

SFS TKE can be written as
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5 2 K
h
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1 K
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2
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, (11)

with

S2 [
1

2

 
›u

j

›x
i

1
›u

i

›x
j

!2

5

 
›u

j

›x
i

1
›u

i

›x
j

!
›u

i

›x
j

. (12)

The classical Smagorinsky model assumes a balance

between shear production and dissipation of TKE

(Smagorinsky 1963). Stratification effects can be in-

cluded by maintaining the buoyancy flux (Mason 1989),

2K
h
N2 1K

m
S2 2

c
«
e3/2

l
5 0. (13)

This simplified form of the SFS TKE equation thus ne-

glects the tendency, mean advection, and turbulent

transport.

b. Formulations of the length scales

1) CONSTANT LENGTH SCALE lD

Deardorff (1973) proposed to use the geometric mean

lD of the filter mesh sizes Dx, Dy, and Dz as a represen-

tative length scale for SFS eddies,

l
D
[ (DxDyDz)1/3 . (14)

2) STABILITY-DEPENDENT LENGTH SCALE lD

Deardorff (1980) argued that for a stable stratification

the length scale of the eddies may become smaller than

the grid size. The vertical stability can be expressed in

terms of the Brunt–Väisälä frequency N,

N[

�
g

u
0

›u
y

›z

�1/2

. (15)

Deardorff proposed the following stability-dependent

length scale,

l
D
5 c

n

e1/2

N
, (16)

to be used only if its magnitude is smaller than lD,

l5min(l
D
, l

D
). (17)

For l5 lD, the quantity ch becomes dependent on the

stability,

c
h
5

�
c
h,1

1 c
h,2

l

l
D

�
c
m
, (18)

with ch,1 5 1 and ch,2 5 2. This approach effectively

lets the turbulent Prandtl number depend on the

stability, with PrT approaching unity for a very strong

stable stratification. The factor c« is also adapted ac-

cording to

c
«
5 c

«,1
1 c

«,2

l

l
D

. (19)

3) MASON AND THOMSON LENGTH SCALE lM

Last we mention the length scale lM that was con-

structed by Mason and Thomson (1992) to let the re-

sulting eddy viscosity better match observed MO

similarity relations. Specifically, they proposed

1

lnM
5

1

[k(z1 z
0
)]n

1
1

(c
s
l
D
)n
, (20)

with z0 the roughness length. Brown et al. (1994) sug-

gested to use n 5 2.

3. Solutions of the subfilter-scale TKE equation
for a stable stratification

Analytical solutions of the SFS TKE equation will be

presented for the special case where the production and

shear balances the buoyancy flux and the viscous dis-

sipation. Solutions for different length scale formula-

tions will be considered. In the remainder of the paper

we will use subscripts D,D, andM to indicate quantities

that are derived with the constant length scale lD de-

fined by (14), the stability-dependent length scale lD
according to (16) and (17), and the length scale lM
following (20), respectively.

a. Constant length scale lD

For the constant length scale l5 lD a solution for e can

be obtained with use of (6) and (13),

e5
c
m

c
«

 
12

Ri
g

Ri
C,D

!
l 2DS

2 , (21)

with the gradient Richardson number Rig defined by
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Ri
g
[

N 2

S 2
. (22)

SFS turbulence will vanish if Rig exceeds a critical value

RiC,D,

Ri
C,D

5
c
m

c
h

[Pr
D
. (23)

DALES has evolved from the LES code used by

Nieuwstadt et al. (1993), and the original setting

ch 5 3cm is still used; that is, PrD 5 1/3.

From the definition of the eddy viscosity in (6) it fol-

lows that

K
m,D

5 c2s

 
12

Ri
g

Ri
C,D

!1/2

l 2DS , (24)

where cs represents the Smagorinsky constant,

c
s
[

�
c3m
c
«

�1/4

5
c
f

2p

�
3

2
a
m

�23/4

, (25)

with cf the filter constant andam theKolmogorov constant

(see Table 1 for their values used in DALES). We note

that there is no general consensus on the optimum values

of these quantities, causing differences in the value for the

Smagorinsky constant. For example, Lesieur et al. (2005)

uses am 5 1:4, whereas Schumann (1975) and Meneveau

andKatz (2000) use a value of 1.5 and 1.6, respectively. As

compared to DALES, Mason (1989) uses a smaller filter

constant of cf 5 2. Kleissl et al. (2003) used an array of

sonic anemometers to measure SFS diffusion constants in

the atmospheric surface layer. They actually found that cs
is not constant but is reduced near the ground surface and

also tends to become smaller with increasing stability.

b. Stability-dependent length scale lD

Also for lD it is possible to determine a solution for e

(VanZanten 2000). Substitution of (6) in (13), and using

(16), (18), and (19), gives

e5

 
c
m
c
n

c
h,2
c
m
c2n 1 c

«,2

!2 
1

Ri
g

2
1

Ri
C,D

!2

Ri
g
l 2DS

2 . (26)

In this case e becomes zero for a critical Richardson

number of

Ri
C,D

5
1

c
h,1

1 c
«,1
/(c

m
c2n)

. (27)

DALES uses the constants as proposed by

Deardorff (1980), which yields RiC,D 5 0:26 (see

Tables 1 and 2 for a summary). This value is slightly

smaller than the critical Richardson number for lD,

RiC,D 5 1/3.

With aid of (16), (17), and (26) we can assess the

threshold Richardson number above which value lD is

applied (VanZanten 2000),

Ri
g,D

5
1

c
h,1

1 c
h,2

1 (c
«,1

1 c
«,2
)/(c

m
c2n)

, (28)

where Rig,D 5 0:075 for the settings used in DALES.

With aid of the solution for e in (26), we can express lD
in terms of the gradient Richardson number,

l
D
5 c

n

 
c
m
c
n

c
h,2
c
m
c2n 1 c

«,2

! 
1

Ri
g

2
1

Ri
C,D

!
l
D
. (29)

Interestingly, the stability-dependent length scale still

depends on the grid size lD.

With use of (6), (7), (16), (18), and (26) we can express

the eddy viscosity and the stability-dependent turbulent

Prandtl number as, respectively,

K
m,D

5

"
(c

m
c
n
)3/2

c
h,2
c
m
c2n 1 c

«,2

#2 
1

Ri
g

2
1

Ri
C,D

!2

Ri1/2g l 2DS and

(30)

Pr
D
5

"
c
h,1

1 c
h,2
c
m
c2n

 
1/Ri

g
2 1/Ri

C,D

c
h,2
c
m
c2n 1 c

«,2

!#21

. (31)

c. Mason and Thomson length scale lM

Mason and Thomson (1992) proposed to replace the

factor cslD in (24) by lM to give

K
m,M

5 l2M

 
12

Ri
g

Ri
C,D

!1/2

S . (32)

They recommended a turbulent Prandtl number of 0.7.

TABLE 1. Summary of constants used in the SFS TKE model. The

values correspond to the ones used in DALES.

cf am ch,1 ch,2 c«,1 c«,2 cn

2.5 1.5 1 2 0.19 0.51 0.76

TABLE 2. Summary of dependent quantities for the SFS TKE

model. The values correspond to the ones used in DALES.

cm cs ch c« PrT RiC

lD 0.12 0.22 0.35 0.7 0.33 0.33

lD 0.12 0.22 0.12–0.35 0.17–0.7 0.33–1 0.26
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4. Eddy viscosity following Monin–Obukhov
similarity relations

We will derive the respective eddy viscosities and

diffusivities from empirical MO relations for compari-

son with the analytical SFS TKE results. For the con-

venience to the reader, some key definitions used inMO

similarity theory are summarized in the appendix. In this

study we will frequently use the following key relations:

Pr
T
5

K
m

K
h

5
f
h

f
m

. (33)

Högström (1988) evaluated several formulas for fm and

fh that were based on observations from field cam-

paigns. In addition,Högströmproposedmodifications to

correct for instrumental shortcomings (his Tables VI

and VII). The parameterizations for a stable stratifica-

tion as obtained by Businger et al. (1971) from the

Kansas field experiment read

f
m,obs

5a
m
1b

m

z

L
and f

h,obs
5a

h
1b

h

z

L
, (34)

with corrected coefficients am 5 1, bm 5 6:0, ah 5 0:95,

and bh 5 7:8. We have introduced the subscript ‘‘obs’’ to

denote a result that is based on observations. The cor-

rected fits for Dyer (1974) have slightly different slope

factors: bm 5 4:8 and bh 5 4:5. Högström used k5 0:4

and a reciprocal turbulent Prandtl number Pr21
T 5 1:05

for neutral conditions. With regard to the latter choice,

Högström remarked that from a physical point of view it

is difficult to find a reason why for neutral conditions fm

should differ from fh. Besides, he noted that for z/L5 0

the uncertainty in the observations could well accom-

modate fm 5fh 5 1. The large scatter in the observa-

tions for stable conditions and, particularly, the scarce

amount of data for z/L$ 0:5 hindered to select the best

fits, although Högström (1988) hinted at a slightly better

performance for the modified fh of Businger et al.

(1971) and the modified fm of Dyer (1974).

Grachev et al. (2007b) analyzed measurements col-

lected during stable and very stable conditions over the

Arctic sea ice pack during the Surface Heat Budget of

the Arctic Ocean Experiment (SHEBA). They pro-

posed the following nonlinear MO similarity functions:

f
m,obs

5 11
6:5z/L(11 z/L)1/3

1:31 z/L
and (35a)

f
h,obs

5 11
5z/L1 5(z/L)2

11 3z/L1 (z/L)2
. (35b)

The SHEBA functions therefore suggest a turbulent

Prandtl number of unity for neutral conditions.

Moreover, the three parameterizations presented above

have in common that for a stable stratification

fm,obs 6¼ fh,obs, which implies that the turbulent Prandtl

number depends on the stability. We note that direct

numerical simulation results analyzed by Van de Wiel

et al. (2008) suggest a value of about 5 both for bm and

bh, whereas in a similar study by Ansorge and Mellado

(2014) a slightly larger value of 5.7 was reported for bm.

With aid of (A10), it is possible to derive the corre-

sponding eddy viscosity forMO functions that are linear in

z/L like (34). To this end we will first eliminate fm to give

z

L
5

a
m
Ri

g

Pr
obs

2b
m
Ri

g

. (36)

In the surface layer we will approximateL5L. Next we

can rewrite (A6) as a function of Rig,

K
m,obs

5
(kz)2

(a
m
1b

m
z/L)2

S
h
5

 
12b

m
Ri

g
/Pr

obs

a
m

!2

(kz)2S
h
,

(37)

and Kh,obs can be obtained straightforwardly from (33),

K
h,obs

5
K

m,obs

Pr
obs

. (38)

5. Comparison of the SFS TKE eddy viscosity with
Monin–Obukhov similarity relations

Here we will compare the eddy mixing functions as

imposed by the SFS TKE schemewith those obeyingMO

similarity relations. Our analysis specifically applies to

situations in which the SFS contribution dominates the

total flux (i.e., in the surface layer). For simplicity, we will

consider the situation in which the resolved vertical ve-

locity is negligibly small, which allows to write S5 Sh.

To facilitate a direct comparison of the eddy mixing

coefficient that follows from the SFS TKE model and

MO functions, we express the eddy viscosity and diffu-

sivity as (Duynkerke and De Roode 2001)

K
m
5 f 2m(kz)

2
S
h

and (39a)

K
h
5 f 2h (kz)

2
S
h
, (39b)

with fm and fh the mixing functions for momentum and

heat, respectively. From a comparison of (39) with the

definitions (A6) and (A11), it follows that

f
m
5

1

f
m

and (40a)

MAY 2017 DE ROODE ET AL . 1501



f 2h 5
1

f
m
f
h

. (40b)

As schematically depicted in Fig. 3, this implies that

for any z/L, and for any arbitrary form of fm and fh,

the mixing functions can be determined, while (A10)

allows to compute the corresponding stability in terms

of Rig.

Table 3 summarizes the analytical expressions for the

eddy viscosity, the mixing function, and the critical

Richardson number for the length scales lD and lD, in

addition to the ones obtained from the MO relations.

a. Mixing function fm

For the special case of MO functions that are linear in

z/L [see (34)] the mixing function can be obtained from

(37) with (39),

f
m,obs

5
12b

m
Ri

g
/Pr

obs

a
m

. (41)

A comparison of (24) or (30) with (39) shows that the

mixing functions fm for lD and lD can be written as,

respectively,

f
m,D

5 c
s

 
12

Ri
g

Ri
C,D

!1/4
l
D

kz
and (42)

f
m,D

5
(c

m
c
n
)3/2

c
h,2
c
m
c2n 1 c

«,2

 
1

Ri
g

2
1

Ri
C,D

!
Ri1/4g

l
D

kz
. (43)

We note that the maximum values for the mixing func-

tion are obtained at the lowest model level, z5Dz, and
that the magnitude of fm will decrease proportionally

to the reciprocal of the height z.

Figure 4 shows that the mixing function fm evaluated

at a height z5Dz5 3:125m increases for increasing

aspect ratio Dxh/Dz. Here Dxh denotes the horizontal

grid size, which we take equal in the two horizontal di-

rections. Except for a weak stable stratification, exces-

sive SFS mixing will occur if Dx* 2Dz. Grid size

FIG. 3. Schematic of (top) key equations that are used to compare the dependency of the

mixing functions andMO relations on the stability parameters Rig and z/L from observations

and (bottom) the ones that are imposed by the LES SFS TKE equation. The bottom panel

gives an example for the constant length scale lD.
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configurations of Dx5 4Dz are commonly used to study

convective cases. Our analysis suggests that one should

be careful to apply an anisotropic grid, in particular if

one aims to simulate the diurnal cycle including a noc-

turnal period of stable stratification. The results actually

demonstrate that excessive mixing will occur for

Rig * 0:1. It is possible to diminish the mixing function

by reducing the value of the Smagorinsky constant.

For example, Beare and Macvean (2004) reduce the

Smagorinsky constant cs from 0.23 to 0.15 for coarser-

grained simulations of grid length 10m or more.

The stability-dependent length scale lD somewhat al-

leviates the problem of excessive mixing as compared to

the use of lD, yet for Dx. 2Dz the SFS TKE model also

produces too much SFS mixing (see Fig. 4b).

An inspection of the imposed mixing function for the

length scale lM in (20), which was proposed to closely

match MO relations near the surface, shows that for an

isotropic grid excessivemixing will occur if Rig exceeds a

value of about 0.11 (see Fig. 4c). We also can see that

for a larger value of the horizontal grid size the range of

Rig where excessive mixing takes place expands toward

smaller values.

b. Mixing function fh and the turbulent Prandtl
number

In the model intercomparison study of the dry con-

vective boundary layer reported by Nieuwstadt et al.

(1993) the four participating LES models applied tur-

bulent Prandtl numbers in the range between 0.33 and

0.46. Other LES models use a constant value of 0.7

(Mirocha et al. 2010), 0.4 (Savre et al. 2014), or 1/3

(Matheou et al. 2011), respectively. However, these

turbulent Prandtl numbers are clearly not very repre-

sentative for stably stratified conditions, as is illustrated

in Fig. 5. The ‘‘default value’’ PrD 5 1/3 appears to be

much smaller than Probs. Interestingly, as can be seen

from the definition of ch for lD (18), for a strong stability

lD / 0, and consequently in this limit PrD / ch,1 5 1.

For lD the mixing function for heat can be simply ex-

pressed as

f
h,D

5
f
m,D

Pr
D

. (44)

This result, for PrD 5 1/3, is shown in Fig. 6a. It is striking

to find that at z5Dz the used turbulent Prandtl number

pushes fh,D toward excessive mixing for any positive

value of Rig. Because this is highly undesired, this result

provides another strong argument to use PrD 5 1 for the

stable regime. Excessive mixing is also found for the

stability regime where the stability-dependent length

scale is applied (see Fig. 6b).

Mason and Thomson (1992) proposed a turbulent

Prandtl number of 0.7. It can be directly seen from

Fig. 4c that this value will yield excessive mixing for heat

for even smaller values of Rig as compared to the mixing

of momentum.

c. MO similarity functions fm imposed by the
subfilter-scale TKE model

Given the expressions for the mixing functions it is

straightforward to diagnose the fm relation imposed by

the SFS TKE equation in terms of z/L. From (A6) and

(39) we can write

f
m
5

1

f
m
(Ri

g
)
. (45)

With use of (A10) the dimensionless height z/L can also

be expressed as a function of Rig,

z

L
5

Ri
g

Pr
T
(Ri

g
)f

m
(Ri

g
)
. (46)

For any 0#Rig #RiC we can therefore diagnose both

fm and z/L, which provides another means to compare

the SFS TKE scaling behavior with MO relations.

Figure 7 shows the MO function imposed by the SFS

TKEmodel. For the lowest model level (z5Dz) we find
that the slope of fm is much smaller than the observed

value for l5 lD. For a neutral stratification the observed

relation fm 5 1 is generally not obeyed. For an isotropic

TABLE 3. Summary of SFS TKEmodel solutions for a constant and stability-dependent length scale, lD and lD, respectively. The last column

indicates solutions following Monin–Obukhov similarity relations in case they are linearly dependent on z/L, fm,obs 5am 1bmz/L.

lD lD MO (observations)

RiC
cm
ch

cmc
2
n

ch,1cmc2n 1 c«,1

1

bm

PrT
cm
ch

�
ch,1 1 ch,2cmc

2
n

�
1/Rig 2 1/RiC,D
ch,2cmc2n 1 c«,2

��21 fh,obs

fm,obs

fm cs

�
12

Rig
RiC,D

�1/4
lD
kz

(cmcn)
3/2

�
1/Rig 2 1/RiC,D
ch,2cmc2n 1 c«,2

�
Ri1/4g

lD
kz

12bmRig/Probs
am
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grid, the value is too large and becomes too small

toward a stronger anisotropy of the grid. In the high

range of z/L the use of lD gives a slope that is much

closer to the observations.

We notice that for lD the results look satisfactorily

with regard to the observations; however, since it is only

applied for a sufficiently strong stable stratification, we

find that the stability regime in which lD is actually ap-

plied gives too high values for fm. The approximately

linear fm behavior for the high-stability regime can be

understood by taking the limit lD/lD / 0, which ac-

cording to (18) and (19) yields constant values for ch and

c«, respectively. In that case the SFS TKE equation

[(13)] simply becomes

1

Ri
g

2 c
h,1
2

c
«,1

c2ncm
5 0. (47)

Using the relation (A10) we can obtain the following

analytical solution:

f
m,D

5

 
11

c
«,1

c
h,1
c2ncm

!
z

L
5b

m,D

z

L
. (48)

This solution is similar to the one found by for the

Reynolds-averagedTKEequationwith stability-dependent

length scale as applied in the Regional Atmospheric

Climate Model (RACMO) (Baas et al. 2008). They

discussed in detail how the coefficients of the TKE

model can be chosen in order to match the observed fm

relation. According to the numbers presented in Table 1

the proportionality factor bm,D 5 3:74.

FIG. 4. The mixing function fm as a function of the gradient

Richardson number Rig for (a) l5 lD, (b) l5min(lD, lD), and

(c) l5 lM . The results have been evaluated at the lowest model

level height z5Dz5 3:125m and for horizontal grid sizes Dxh 5
Dx 5 Dy 5 3.125, 6.25, and 12.5 m, respectively, shown as solid,

dotted, and dashed red lines (see legend). The mixing functions

according to the MO similarity relations derived from observa-

tions by Businger et al. (1971), Dyer (1974), and Grachev et al.

(2007b) are also shown, where corrected formulas by Högström
(1988) were used for the former two. The black lines and names

displayed in the legend refer to the first author of the

original papers.

FIG. 5. The turbulent Prandtl number for lD (solid red line) and

for the stability-dependent length scale lD (solid blue line) as

a function of the gradient Richardson number Rig. The threshold

Richardson number Rig,D above which lD is used is indicated by

the vertically pointing arrow. The results extend to the critical

Richardson numbers RiC,D and RiC,D for lD and lD, respectively. As

in Fig. 4, the black lines indicate results that were diagnosed from

observed MO relations.
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6. Large-eddy simulations of the GABLS1 case

As an illustration of our analysis we will discuss four

simulations of the GABLS1 case (Beare et al. 2006),

which all used an isotropic grid but with different mesh

sizes of 3.125, 6.25, 12.5, and 25m, respectively. The

simulations shown all used lD and the full SFS TKE

model including the tendency and turbulent transport

terms. Following the GABLS1 case description, each

simulation lasted 9h and was run with 128 grid points in

each direction. Here we note that DALES applies the

MO relations as proposed by Beljaars and Holtslag

[1991, their (28) and (32), respectively] to compute the

fluxes at the ground surface from the local gradients of

momentum and heat.

Sensitivity to grid resolution and length scale

Figure 8a shows that for lD 5 3:125m the height of the

maximum wind speed is located at about 175m, in

agreement with the high-resolution simulation results

presented by Beare et al. (2006). Figure 9 shows the SFS

TKE results as well as its analytical solution in (21) for

the simulations in which there was hardly any resolved

turbulence, lD 5 12.5 and 25m, respectively. For the

latter two cases, we find a very good correspondence

between the LES results and the analytic solution. Since

we performed the runs with the full prognostic equa-

tion for e in (8), including the SFS turbulent transport

as well as the tendency of e, we conclude that for

SFS-dominated SBL flow the prognostic SFS TKE

model equation [(8)] almost behaves identically to the

Smagorinsky model with a buoyancy flux contribution.

According to Nieuwstadt (1984), the total transport of

TKE for the quasi-steady stable boundary layer can be

assumed to be negligibly small with respect to the other

terms. For the laminarized cases, Fig. 8c shows that Rig
is rather small in the lower part of the boundary layer,

which prevents the application of lD because Rig is

smaller than the critical value of 0.075.

FIG. 7. The imposed Monin–Obukhov similarity relation fm as

a function of the nondimensional height z/L for (a) l5 lD and

(b) l5min(lD, lD). The results have been evaluated at the lowest

model level height z5Dz5 3:125m and for horizontal grid sizes

Dxh 5 Dx 5 Dy 5 3.125, 6.25, and 12.5m, respectively, shown as

solid, dotted, and dashed red lines (see legend). As in Fig. 4, the

black lines indicate results that were diagnosed from observedMO

relations.

FIG. 6. The mixing function fh as a function of the gradient

Richardson number Rig for (a) l5 lD and (b) l5min(lD, lD). The

results have been evaluated for PrD 5 1/3 at the lowest model level

height z5Dz5 3:125m and for a horizontal grid size Dxh 5 Dx 5
Dy 5 3.125, 6.25, and 12.5m, respectively, shown as solid, dotted,

and dashed red lines (see legend). As in Fig. 4, the black lines in-

dicate results that were diagnosed from observed MO relations.
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Following Beare et al. (2006), Fig. 10 compares the

MO similarity functions as obtained from the LES re-

sults with the observed MO relations. For the high-

resolution run, the slopes for both fm and fh are about

a’ 3:5, resulting in a turbulent Prandtl number of about

unity. However, the effect of the prescribed ratio

PrD 5 cm/ch 5 1/3 is clearly visible from the diagnosed

ratio fh/fm, which tends toward this value for small

values of z/L. This result clearly demonstrates the effect

of a SFS TKE-dominated regime, which for the high-

resolution run applies to the surface layer, and is in ac-

cord with a Prandtl number as predicted by (7). For the

SFS-dominated solutions the slope offm is too large and

too small for fh as compared to the observations.

7. Conclusions

We have studied the Smagorinsky SFS TKE equation

including shear, a buoyancy flux, and a dissipation term.

More specifically, we derive analytical solutions for the

special case for which there is no resolved turbulence.

Three different length-scale formulations are consid-

ered. The simplest one is equal to the geometric mean

value of the gridmesh sizes in all three directions lD. The

length scale lD as proposed byDeardorff (1980) depends

on the magnitude of the SFS TKE and the static stabil-

ity. A third length scale lM involves the size of the tur-

bulent eddies near the surface for neutral conditions

(Mason and Thomson 1992). The results are presented

in terms of analytical expressions for the mixing

functions, which in turn are used to diagnose MO re-

lations that are implicitly imposed by the SFS TKE

model. For each length scale, their imposed MO re-

lations are found to be strongly dependent on the grid-

mesh size. The length scales that are actually used inMO

flux–gradient relations are the height above the surface

and the MO stability length. For this reason the SFS

fluxes will generally not match the observed flux–

gradient relations that are applied as a lower boundary

condition at the ground surface. In any case, the SFS

TKE model should not produce excessive mixing.

From a direct comparison of the diagnosed SFS mixing

functions with empirical fits from field experiments, we

have assessed the conditions that give rise to this un-

desirable situation. We will summarize our findings for

the neutral or weakly stable regime and the very stable

regime, respectively.

a. Neutral or weakly stable stratification,
0#Rig # 0:1

The widely used value of 1/3 for the turbulent

Prandtl number will inevitably yield excessive mixing

of heat at the lowest model levels. This finding applies

to any of the three length scales studied, although it

should be kept in mind that for Rig , 0:075, lD is not

used. The mixing function for heat can be reduced if

PrT is increased. This is actually supported by obser-

vations which show that the value of PrT is close to

unity. In fact, if one sets PrT 5 1 in the SFS TKE

model, the problem of excessive mixing of heat will

FIG. 8. Vertical profiles of the hourly mean (a) wind speed Us, (b) virtual potential temperature uy , and the (c) gradient Richardson

number Rig as obtained during the last hour of the simulation. The line styles indicate the isotropic grid sizes according to the legend. The

LES runs applied the constant length scale lD in the SFS TKE equation.
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vanish. For an isotropic grid, the LES SFS imposed

mixing function for momentum will always be smaller

than the MO-based mixing function. To match the

turbulent Prandtl number for different stabilities,

Gibbs and Fedorovich (2016) present a parameteri-

zation that allows PrT to vary smoothly between 1/3

for unstable conditions and 1 for stable conditions.

b. Very stable stratification, Rig . 0:1

The spread in the observations of the turbulent

Prandtl number does not permit to recommend a tur-

bulent Prandtl number (Sukoriansky et al. 2005). The

studies by Ohya (2001), Zilitinkevich et al. (2007), and

Anderson (2009) report that the turbulent Prandtl

number increases with increasing stability, which is hy-

pothesized to be due to internal wave activity that mix

the momentum but do not mix a scalar. By contrast,

Grachev et al. (2007a) and Sorbjan (2010) suggest that if

outliers are rejected, PrT decreases from 0.9 in nearly

neutral conditions to 0.7 for increasing stability. In any

case, in this regime excessive SFS mixing of momentum

and heat will occur both for lD and lM. Because for in-

creasing stability lD diminishes and PrT increases, the

mixing functions for this length scale are much closer to

the ones based on MO relations.

Field observations analyzed by Kleissl et al. (2003)

suggest that the Smagorinsky constant cs is reduced near

FIG. 9. Vertical profiles of the hourly mean SFS TKE during the

last hour of the simulations. The four simulations were run with

a different isotropic grid size. The length scale lD was used in the

SFS TKE equation. The line styles are according to the legend. The

symbols represent the analytical solutions from (21) that were di-

agnosed for the two runs that used the coarsest grid resolution and

in which there was hardly any resolved turbulence.

FIG. 10. Diagnosed (a) fm, (b) fh relations, and (c) the turbulent

Prandtl number for LES runs that used an isotropic grid and

a constant length scale in the SFS TKE equation. The LES results

were collected from heights within the boundary layer during the

last hour of the simulations and represent 10-min averages. The

plotted symbols and line styles are according to the legend. As in

Fig. 4, the black lines indicate results that were diagnosed from

observed MO relations.
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the ground surface and also tends to become smaller

with increasing stability. A part of the excessive mixing

in the surface layer might therefore be attributed to the

prescribed constant value of cs.

c. Anisotropic grids

Because lD depends on the horizontal grid sizes, the

application of an anisotropic grid with Dx.Dzwill yield
enhanced mixing functions for both heat and momen-

tum. This is true for each of the length scales considered

here because they all include some dependency on lD. To

avoid excessive SFS mixing of both momentum and

heat, the use of an anisotropic grid should therefore be

strongly discouraged for a stable stratification.

d. NWP models

For lD we derived an analytical expression for its im-

posed fm function in the limit of a very strong stable

stratification. This solution can actually be extended

toward cases of weak stability by setting the constants

ch,2 and c«,2 to zero. In this way,fm might be calibrated to

match an observed fit. As discussed by Baas et al. (2008),

such an approach might be useful for NWPs that use a

Smagorinsky type of TKE closure.

e. Variants of the Smagorinsky-type SFS TKE model

The central question addressed in this study is un-

der which conditions, in terms of atmospheric stabil-

ity and grid configuration, excessive SFS mixing will

take place. Although our analysis is dedicated to the

traditional Smagorinsky SFS TKE model, this ques-

tion is actually relevant to any arbitrary SFS TKE

model. In this context we would like to mention two

variants of the Smagorinsky model. In the SFS model

by Sullivan et al. (1994), the SFS TKE production

is strongly diminished by taking out the mean shear

from the shear production term. Their LES results are

found to be insensitive to grid anisotropy. Basu and

Porté-Agel (2006) applied a dynamic SFS modeling

approach in which the Smagorinsky constant and the

turbulent Prandtl number are diagnosed from the re-

solved flow at each grid point and for each time step.

They simulated the GABLS1 case and concluded that

their results showed relatively little resolution de-

pendency, even for relatively coarse resolutions. Last,

in the context of the present study we would like

to mention the work of Shao et al. (2013), who pre-

sented a method that aims to give SFS fluxes of heat

and moisture in the surface layer that are consistent

with the surface fluxes.
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APPENDIX

Summary of Definitions Used in Monin–Obukhov
Similarity Theory

The MO functions fm and fh describe the relations

between the mean vertical gradients of the horizontal

wind speed and the virtual potential temperature,

respectively, in terms of their vertical fluxes accord-

ing to

f
m
[

kz

u*
S
h

and (A1)

f
h
[2

kzu*

w0u0y

›u
y

›z
, (A2)

with k the von Kármán constant, u* the local friction

velocity,

u*[ (u0w0 2 1 y0w0 2)1/4 , (A3)

and Sh defines the absolute value of the mean shear of

the horizontal wind velocity,

S
h
[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
›U

›z

�2

1

�
›V

›z

�2
s

. (A4)

We note that in practice the turbulent fluxes in these

relations are usually obtained from point measure-

ments. Following Reynolds decomposition, an overbar

indicates a time-mean value and a prime a fluctuation

with respect to the mean. The dependencies of fm and

fh on the stability need to be determined empirically

from observations. They are generally expressed in

terms of the nondimensional group z/L, with the Ob-

ukhov length L defined by

L[2
u3

*

k(g/u
0
)w0u0y

. (A5)

Here the flux values of momentum and heat are taken

at the surface. However, Nieuwstadt (1984) analyzed

observations collected during stable conditions and
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hypothesized that generally the local, height-dependent,

MO length L is a more appropriate length scale. The

difference betweenL andL is that for the latter quantity

the fluxes observed at a height z above the surface are

used. Formally, one can show that MO similarity is an

asymptotic case of local similarity (Van de Wiel et al.

2012), which is used in the present study. In the surface

layer, which is defined as the lower 10% of the

boundary layer, the difference between the local and

the surface-based MO lengths is less than 10%. The

benefit of using L is that it allows to extend MO simi-

larity to the whole stable boundary layer (Nieuwstadt

1984; Wyngaard 2010)—a strategy that was also uti-

lized in the GABLS1 model intercomparison study

(Beare et al. 2006).

With aid of (4) and (A3) we can express fm [see (A1)]

in terms of an eddy viscosity,

K
m
5

(kz)2

f2
m

S
h
. (A6)

With some simple manipulations, it will be possible to

directly compare this expression with the analytic solu-

tions for the eddy viscosity as found for the SFS TKE

model. More specifically, as schematically depicted in

Fig. 3, we wish to present the MO-based eddy viscosity

as a function of Rig. To this end we will first substitute

the definition of L in (A1) to obtain

f
m
52

u2

*Sh

(g/u
0
)w0u0y

z

L
. (A7)

As a next step, we will use (4) and (5),

u2

*5K
m
S
h

and (A8)
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to eliminate u* and w0u0y from (A7),

f
m
5

K
m

K
h

S
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z
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g

z

L
. (A10)

To arrive at the last term we used the definitions of PrT
and Rig according to (7) and (22), respectively.

Last, with aid of (A2), (A6), (A8), and (A9), we can

express the eddy diffusivity in terms of MO relations

K
h
5kz

(K
m
S
h
)1/2

f
h

5
(kz)2

f
m
f
h

S
h
, (A11)

which in turn allows us to write the turbulent Prandtl

number [see (7)] as Grachev et al. (2007b),

Pr
T
5

K
m

K
h

5
f

h

f
m

. (A12)
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