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Abstract We present a proof-of-concept for the adaptivemesh refinement method applied to
atmospheric boundary-layer simulations. Such amethodmay form an attractive alternative to
static grids for studies on atmospheric flows that have a highdegree of scale separation in space
and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a
strong inversion. For such cases, large-eddy simulations using regular grids often have to rely
on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal
domain. Here we analyze a flow configuration that describes the growth and subsequent
decay of a convective boundary layer using direct numerical simulation (DNS). We validate
the obtained results and benchmark the performance of the adaptive solver against two runs
using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and
refine the grid dynamically whilst maintaining an accurate solution. In particular, during the
initial growth of the convective boundary layer a high resolution is required compared to the
subsequent stage of decaying turbulence. More specifically, the number of grid cells varies
by two orders of magnitude over the course of the simulation. For this specific DNS case, the
adaptive solver was not yet more efficient than the more traditional solver that is dedicated to
these types of flows. However, the overall analysis shows that the method has a clear potential
for numerical investigations of the most challenging atmospheric cases.
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1 Introduction

The aim of the present study is to introduce adaptive mesh refinement (AMR) as an efficient
tool for numerical investigations of the atmospheric boundary layer (ABL) using turbulence
resolving methods. This refers typically to models that rely on direct numerical simulation
(DNS) or large-eddy simulation (LES) techniques. In general, AMR solvers aim to distribute
the available computational resources efficiently over a domain by dynamically refining and
coarsening the computational grid in space and time. AMR techniques have successfully
been employed in studies concerning flows with a high degree of scale separation through-
out the spatial and/or temporal domain. Such studies concern a wide range of topics, e.g.
cosmological hydrodynamics (Teyssier 2002), electro hydrodynamics (López-Herrera et al.
2011), multiphase flows (Fuster et al. 2009), flows in complex geometries (Popinet 2003)
and turbulence simulations (Schneider and Vasilyev 2010). However, to our knowledge, the
potential of this technique has not yet been explored for ABL research, and here we aim to do
so through an investigation of the consecutive growth and decay of a convective boundary-
layer (CBL) system. The flow configuration is modelled after Heerwaarden and Mellado
2016 who performed an in-depth study of this case using a regular grid configuration. As
such, the AMR method is tested and benchmarked.

Several methods that meet a varying resolution requirement throughout the spatial domain
have already been successfully applied in studies onABL turbulence. For example, stretching
and squeezing of grids (see e.g. Heus et al. 2010; Heerwaarden and Mellado 2016; Roode
et al. 2016), nested grids (see e.g. Sullivan et al. 1996, 1998; Moeng et al. 2007; Mirocha
et al. 2013; Muñoz-Esparza et al. 2014) and the usage of unstructured anisotropic grids.
However, the mesh is always kept fixed during the simulation, whereas dynamical changes
in the ABL call for variation of resolution in time. Furthermore, the aforementioned methods
of refinement need to be predefined. Consequently, detailed a priori knowledge is needed on
the varying resolution requirement throughout the spatial domain. Apart from tailored and
well-known cases, this knowledge is usually not available beforehand; therefore, we identify
three favourable characteristics of an AMR approach for ABL studies. First, the resolution
can vary throughout the spatial domain. Second, the grid can vary in time such that temporal
variation in the local resolution requirement can bemet. Third, the grid is generated adaptively
based on the evolution of the numerical solution itself, relaxing the requirement of detailed
a priori knowledge on the resolution requirement.

To illustrate our philosophy, we briefly discuss a textbook example of the evolution of
the ABL during a diurnal cycle (after Stull 1988). Figure 1 depicts a typical evolution of
the ABL during a diurnal cycle. Around sunrise the solar irradiation of the Earth’s surface
causes a thermal instability that results in the rapid growth of a CBL. The typical size of the
largest thermal plumes scales with the boundary-layer height and hence there is a temporal
dependency on the resolution requirement to resolve these turbulent structures. The growth
of the ABL slows down when the rising thermals reach the inversion layer, which effectively
caps turbulent structures at the top of the CBL. The dynamics within an inversion layer
are of pivotal importance for the evolution of the CBL (Garcia and Mellado 2014). Apart
from the effective ‘lid’ on the boundary layer, entrainment processes occur here and the
formation of stratocumulus clouds is promoted by the large jump in temperature with height.
Due to the presence of strong stable stratification, turbulent length scales are suppressed
(Lozar and Mellado 2015), and in order to resolve the most prominent turbulent structures
here, a much higher resolution is necessary compared to the bulk of the CBL (Sullivan and
Patton 2011; Lozar and Mellado 2015). Applying such high resolution everywhere in the
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Fig. 1 Sketch of a prototypical diurnal cycle evolution. Adapted from Stull (1988)

domain is not feasible given the current status of computational resources, and might not
be feasible in coming years (Bou-Zeid 2015). For this reason, many LES studies have to
rely on their subgrid-scale (SGS) parametrizations within the region of the inversion layer,
partially negating the purpose of a turbulence resolving study. Furthermore, the exact height
and strength of the inversion layer are not always known a priori (except in cases that have
been studied before). Fixed nested grids (Sullivan et al. 1998) are thus not always flexible
enough to capture the dynamics properly. On the other hand, practically speaking, it should
be noted that LES results between various studies often tend to converge, signifying that SGS
models have appreciable skill in describing certain characteristics of the inversion layer (see
e.g Nieuwstadt et al. 1993; Siebesma et al. 2003).

At the approach of sunset, thermal plumes gradually decay into so-called residual turbu-
lence, and due to the radiative cooling of the Earth’s surface, stable stratification sets in and
turbulence is now driven by wind shear only. The stable boundary layer (SBL) is typically
much shallower than the CBL and, furthermore, the length scales of the turbulent structures
that account for the mixing of heat and momentum within this layer are only a fraction of the
size of those associated with daytime convective turbulence (Basu et al. 2008). Additionally,
Ansorge and Mellado (2016) argue that the resolution requirement for their simulations of
the intermittently turbulent SBL is dictated by localized dissipative flow structures that only
encompass a fraction of the computational domain.

Rather than capturing the cyclic behaviour of the atmosphere as depicted in Fig. 1, the
contrast between daytime and night-time turbulence has resulted in many numerical studies
focusing only on either convective or stable conditions. The studies that do simulate a diurnal
cycle typically struggle to resolve turbulence during the night (Kumar et al. 2006; Basu et al.
2008; Abkar et al. 2015). Furthermore, the transition period itself (i.e. around sunset) would
benefit from high fidelity numerical studies (Lothon et al. 2014). In summary: the example
shows that the intrinsic dynamic character of the ABL calls for flexible techniques such as
an AMR appoach in addition to existing techniques that have successfully been applied to
studies on idealized, steady cases.

Apart from our long-term prospects, we focus here on a case corresponding to the red
and grey sections in Fig. 1. This choice is motivated by the fact that as a first step, we would
like to present a proof-of-concept of the AMR approach before we redirect our attention
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towards more challenging cases. Therefore, we present results obtained with DNS, for which
all turbulent structures are resolved explicitly down to the small-scale Kolmogorov length
(i.e. the viscous length scale) according to the Navier–Stokes equations, without any closure
for turbulence. Compared to, for example, LES, the results obtained with DNS should be
independent of the numerical formulations or choice of any SGS model, whereas with LES
this is a topic of discussion (Bretherton et al. 1999; Siebesma et al. 2003; Fedorovich et al.
2004; Beare et al. 2006; Roode et al. 2017). However, as shown in Sect. 4, the concept of the
AMR approach can be easily extended to LES. Since this technique is a popular choice for
studies on the ABL, we also briefly discuss results obtained with the AMR technique using
a LES formulation.

We realize that it is impractical to address all questions regarding the AMR technique
in relation to ABL simulations. For example, here we focus on a single case whereas we
will argue that the performance of an AMR solver varies depending on the particular case
specifications (see Appendix 1). Furthermore, we choose a numerical solver called Basilisk
(http://basilisk.fr) for the adaptive-grid runs and do not assess alternatives.

The paper is organized as follows; in Sect. 2.1 the details of the adaptive-grid solver are
described, focusing on the AMR algorithm, and in addition, Sect. 2.2 provides an example
analysis of how the algorithm assesses a turbulent signal and adapts the grid accordingly.
In Sect. 2.3 the case and the numerical set-up of the different runs are specified. Section 3
presents the obtained results including a performance assessment, while in Sect. 4 we provide
an outlook on future plans.We finish with a conclusion combinedwith a discussion in Sect. 5.
Additionally, using a simple flow set-up, Appendix 1 illustrates an important advantage the
AMR technique has over a fixed equidistant-grid approach.

2 Methods

2.1 Basilisk and the Grid Adaptation Algorithm

The AMR runs are performed with the partial-differential-equation solver called Basilisk,
a code that contains a second-order accurate finite-volume solver for the Navier–Stokes
equations. For a detailed description of the numerical formulations, see Popinet (2003, 2009),
Lagrée et al. (2011), and references therein.

In order to facilitate local adaptive refinement and coarsening whilst maintaining a Carte-
sian grid-structure, a so-called tree-based grid is used. To illustrate this mesh structure, Fig. 2
shows the two-dimensional (2D) variant of a tree-based grid (i.e. a quadtree), whose structure
introduces a hierarchy between cells at integer levels of refinement. The resolution between
the levels of refinement differs by a factor of two and the Basilisk solver allows neighbouring
cells to vary up to one level. The formulations of numerical methods (e.g. evaluating spatial
derivatives) on equidistant Cartesian grids are relatively straightforward compared to their
uneven grid counterparts. Therefore, ghost points are defined, enabling simple Cartesian sten-
cil operations for the cells in the vicinity of a resolution boundary. These points act as virtual
cells and are located such that all cells have neighbours that are defined at the same level of
refinement, see Fig. 2b. The field values on these ghost cells are defined with interpolation
techniques using the original field values.

The tree grid facilitates an efficient and convenient structure to perform a multiresolution
analysis of a discretized field. During the simulation, such an analysis is used to determine
which grid cells require refinement and where in the domain cells can be coarsened. This
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Fig. 2 Example of a tree-grid structure. The top row presents the spatial structure of the grid cells with varying
levels of refinement (a) and the locations of two types of ghost points whose field values are defined by the
downsampling (red dots) and upsampling (blue dots) operations (b, see text). The plot on the bottom row
presents a corresponding tree representation of the various grid cells and ghost points at different levels (c)

procedure is discussed next. Consider a 1D signal ( f ) discretized with an even number (n)
of elements fn , where individual entries of fn are indexed with i such that f in represents the
i th entry of fn . First, we define a downsampling operation (D) that approximates fn on a
coarser level grid with n/2 elements,

fn/2 = D( fn). (1)

Second, we define an upsampling operator (U ) that samples fn/2 to a signal that is defined
with the same element entries as the original signal fn ,

gn = U ( fn/2), (2)

noting that in general fn �= gn , and the absolute difference χ , defined as,

χ i
n = ‖ f in − gin‖, (3)

can be interpreted as an estimation of the discretization error. The downsampling operation
in the Basilisk solver is defined as local volume averaging of the signal to obtain a value
for a corresponding coarser-level grid cell (see Fig. 3a). This formulation is exact since in a
finite-volume formulation, the grid cell values represent volume-averaged quantities. To be
in line with the second-order accuracy of the solver, the upsampling operation is chosen to
be second-order accurate as well, and entails performing a linear interpolation between the
grid points of the coarse level solution (see Fig. 3b). Once these two operations have been
applied to the discretized signal, it is possible to evaluate χ i

n for each of the grid cells. Given
an error threshold ζ , the following assessment with regards to the grid-cell resolution can be
made,
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Fig. 3 Aone-dimensional, visual representation of how the adaptation algorithm assesses the discretization of
a curved field f (x): a A coarser level estimate of the discretized solution is obtained using the downsampling
operation. b Using these coarse level values, the original discretized solution can be estimated using the
upsampling operation. c The difference between the estimated and original values is interpreted as an error
estimator (χ ) and can be compared against fixed thresholds (e.g. ζ ). d, e If the refinement criterion is exceeded,
new cells at one level higher are initialized locally by applying a linear interpolation technique using the initial
cell values. Alternatively, if the estimated error is smaller than the coarsening criterion for multiple cells, these
cells can be merged if that criterion does not violate the general grid-structure requirements (see text and
Fig. 2)

the i-th grid cell is

⎧
⎪⎨

⎪⎩

too coarse. χ i
n > ζ,

too fine. χ i
n <

2ζ
3 ,

just fine. Otherwise.

(4)

The threshold on the estimated error for refinement ζ is called the refinement criterion, with
ζ having the same physical units as f . Note that the described method is formally linked to
wavelet thresholding that has already been employed for fluid dynamical simulations (Schnei-
der and Vasilyev 2010). The grid can be refined and coarsened according to Eq. 4, and field
values for the new refined and coarsened cells can be defined using an identical formulation
as is used for the U and D operator, respectively. However, the Basilisk solver allows the
formulations for upsampling and downsampling during the grid-resolution assessment and
the actual refinement and coarsening of cells to differ.

In general, the tree grid that results from applying the adaptation algorithm results in the
presence of the aforementioned resolution boundaries and accompanying ghost cells within
the domain (see Fig. 2). To define the field values of ghost points, the Basilisk solver uses the
downsampling and upsampling operations. The implementation is visually represented for a
1D scenario in Fig. 4. First, downsampling is used to define the field values of ghost points
on the high-resolution side of a resolution boundary. Second, an upsampling method is used
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Fig. 4 Example of the treatment of a resolution boundary in a one-dimensional scenario. First, the high-level
region near the resolution boundary is downsampled to obtain values for the coarse-level ghost points in red
(a). Second, linear interpolation of the coarse level solution is used to define the field values of high-level
ghost points in blue (b)

to define the field values of the ghost points on the coarse side of the resolution boundary.
By using this method, the estimation error in the ghost cells’ field values scales with ζ .

The formulations used for downsampling and upsampling as exemplified in Figs. 3 and 4
can be easily extended to two and three dimensions, for so-called quadtree and octree grids,
respectively. In order to demonstrate the algorithm and the effect of different ζ values on the
representation of a turbulent field, the next section shows the results of the algorithm applied
to a slice of a 3D turbulent field.

The Basilisk solver can run in parallel on many processors by applying a domain decom-
position using theMessage Passing Interface (MPI). As the grid structure may change during
a simulation run, an important issue is load-balancing; the decomposition of the domain
between processors must then be modified as the grid is locally refined or coarsened. This is
achieved in the Basilisk solver using the natural decomposition of a Z-ordering space-filling
curve applied to the quad/octree structure (Griebel and Zumbusch 2001).

2.2 An Example of the Adaptation Algorithm

This section aims to exemplify how the adaption algorithm assesses a discretized signal
and adapts the grid according to a refinement criterion ζ . For this purpose, we apply the
algorithm to a subset of the data from the simulation of forced isotropic turbulence in Li et al.
(2008). The simulation is run using a fixed equidistant grid with 10243 nodes; in terms of
the Kolmogorov length scale (η), the grid spacing (Δi ) is Δi = 2.2η. For the analysis we
assume the data to be resolved well enough, and the results are kindly made available via the
Johns Hopkins turbulence databases (http://turbulence.pha.jhu.edu/). We analyze a 2D slice
of the data (i.e. 10242 cells) and for simplicity, we only consider the velocity component
perpendicular to the sliced plane (u⊥). The data are presented in Fig. 5a; using the algorithm
described in Sect. 2.1, we can evaluate the χ field corresponding to the original u⊥ field.
A section of the resulting field, indicated by the black box in Fig. 5a, is shown in Fig. 5b,
where we can clearly see that the estimated discretization error is not distributed uniformly
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Fig. 5 Example of the adaption algorithm applied to a 2D slice of a 3D turbulent field. a Shows the data slice
of the velocity component in the plane-perpendicular direction (u⊥, obtained from Li et al. (2008). b Presents
the χ field, evaluated using the method described in Sect. 2.4. Only the centre part of the slice, indicated by
the black box in a, is shown to reveal the small-scale details in this simulation. c shows the grid-cell-number
dependence on the chosen refinement criterion (ζ ), note the logarithmic vertical axis. A histogram of the χ

field with 512 bins for the original data, and the data corresponding to three ζ values are presented in d. Using
the same colour coding as in d, power spectra and a direct comparison of the u⊥(y, z) field are shown in e, f,
respectively

by the equidistant-grid approach that was used in the simulation. Rather, it appears that there
are anisotropic structures present, visualized by relatively high χ values (in yellow). These
structures appear to correspond to vortex filaments that characterize the dissipative structures
of high-Reynolds-number turbulence (Frisch 1995). This result motivates the application
of the grid refinement algorithm to the data sample shown. Note that we cannot add new
information by refinement and at this point we do not make any claims regarding what χ
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values are reasonable for a turbulence-resolving simulation (this will depend on the numerical
formulations and is the topic of a future study). As such, we only allow the algorithm to
coarsen the field with a maximum error threshold ζ (as defined in Eq. 4). The number of
grid cells resulting from the application of the adaptation algorithm for a range of ζ values is
shown in Fig. 5c; as expected, the number of grid cells decreases with an increasing ζ value.
Note that the plot also shows that even for the high ζ values, the grid still contains cells at
the maximum resolution.

The main concept of employing the described grid-adaption algorithm is visualized in
Fig.5d. Here histograms of the number of grid cells within 512 equally-spaced χ bins are
presented for the original data and the data obtained from applying the grid adaptation
technique with three different refinement criteria. It appears that for the original dataset, the
histogram is monotonically decreasing with increasing χ . This shows that many grid cells
exist where the numerical solution is relatively smooth compared to cells in the tail of the
histogram. Hence, if the grid is chosen such that the discretization errors in the latter region
do not affect the relevant statistics of the flow evolution, then the grid must be over-refined
elsewhere. The histograms of the adapted grids show that the algorithm is able to lower the
number of grid cells with low χ values, such that fewer grid cells are employed. Note that
the grid coarsening does not introduce new grid cells with χ > 2ζ/3, as this part of the
histogram remains unaltered.

When grid cells with a small but finite χ value are coarsened, some of the data are lost and
in general cannot be exactly reconstructed by interpolation techniques (see Sect. 2.4). In order
to assess how the data from the adapted grids compare with the original data, Fig. 5e presents
the corresponding power spectra. It appears that none of the adapted grid data are able to
exactly reproduce the original power spectrum; more specifically, with increasing ζ values,
the wavenumbers (k) that show a significant deviation in E(k) from the original appear to
decrease. We point out that in order to evaluate the spectrum we have linearly interpolated
the data from the non-uniform grids to an equidistant grid with 1024×1024 data points. The
choice of the interpolation technique is arbitrary and will pollute the diagnosed spectrum in
a non-trivial manner. As such, we directly compare all 10242 u⊥(x, y) samples in Fig. 5f,
where we see that the deviation of the data from the 1 : 1 line is a function of ζ .

The example presented in Fig. 5 is meant to demonstrate the used adaptation algorithm.
The following sections are dedicated to assessing its application to time-dependent numerical
simulations of a turbulent field for an atmospheric case.

2.3 Physical Case Set-Up

As indicated in the Introduction, we ran a DNS case from the referenced literature to val-
idate, benchmark and exemplify the adaptive-grid approach. The cases from virtually all
atmospheric-turbulence-resolving studies prescribe the periodicity of the solution in the hor-
izontal directions. Unfortunately, at the time of writing, the Basilisk solver cannot yet handle
an adaptive grid in combination with periodic boundaries. To circumvent this limitation,
we limit ourselves to a case where there is no mean horizontal forcing such that we can
apply a no-penetration boundary condition for the normal velocity component at the lateral
boundaries. This is supplemented with a Neumann-boundary condition for the tangential
velocity components, pressure and buoyancy fields. We realize that this choice might affect
the solution and therefore its impact is assessed by re-running the case using a fixed and
regular grid with both sets of lateral boundary conditions (not shown). It appears that for the
chosen set-up of the case, the simulation results are insensitive to the choice of the horizontal
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Fig. 6 Sketch of the system and
its parameters. The red line
illustrates a typical buoyancy
profile within the CBL during the
initial development. Adapted
from Heerwaarden and Mellado
(2016)
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boundary conditions. Note that in future work, we will update the adaptive solver such that
periodic boundary conditions can be combined with the AMR technique.

We study a case introduced by Heerwaarden and Mellado (2016) that was designed to
investigate the growth and decay of a CBL. In Fig. 6 a schematic overview of the physi-
cal system is presented, and in their physical model a linearly stratified fluid at rest with
kinematic viscosity (ν) and thermal diffusivity (κ) is heated from below by a surface with a
constant temperature. For generality, buoyancy (b) is used as the thermodynamic variable.
The buoyancy is related to the potential temperature (θ ) according to

b = g

θref
(θ − θref ), (5)

where θre f is a reference potential temperature and g the acceleration due to gravity. The initial
linear stratification is expressed as b(z) = N 2z, where N 2 is the Brunt–Väisälä frequency
associated with the initial stratification and z is the height above the surface. We assign a
surface buoyancy b0 larger than zero. Heerwaarden and Mellado (2016) identified relevant
length, time, velocity fluctuation and buoyancy flux scales, L, T,U and B, respectively,
according to

L = b0
N 2 , (6a)

T = b2/30

N 2κ1/3 , (6b)

U = b7/90 κ1/9

N 2/3 , (6c)

B = b4/30 κ1/3, (6d)

and are used to analyze the results in a non-dimensional framework. Two dimensionless
groups can be identified that describe the system for any given set of {ν, κ, N 2, b0},

Pr = ν

κ
, (7a)
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Re =
(

b4/30

ν2/3N 2

)4/3

, (7b)

where Pr is the Prandtl number and Re is the Reynolds number. Note that for Pr = 1, the
definition of the Reynolds number is consistent with Re = UL/ν.

2.4 Numerical Set-Up and Formulation

For the evolution of the three velocity components (ui ), modified pressure (p) and buoyancy
(b), the Navier–Stokes equations for an incompressible fluid are solved under the Boussinesq
approximation, according to,

∂ui
∂t

+ ∂u jui
∂x j

= − ∂p

∂xi
+ ν

∂2ui
∂x2i

+ bδi3, (8)

∂b

∂t
+ ∂u jb

∂x j
= κ

∂2b

∂x2j
, (9)

∂u j

∂x j
= 0, (10)

and with respect to no-slip and a fixed buoyancy (b0) condition at the bottom boundary. At
the top boundary, no-penetration with a free-slip condition is used and for the buoyancy, a
fixed vertical gradient (N 2) is prescribed. Furthermore, a damping layer in the top 25% of
the domain is active that damps buoyancy and velocity fluctuations to prevent the artificial
reflection of gravity waves at the top boundary. The adaptive-grid runs are initialized with
a grid at the minimum resolution that is locally refined to the maximum resolution near the
bottom boundary (i.e. z < L/10) before a random perturbation is added to the velocity
components and buoyancy field in each grid cell.

Each integration timestep, grid adaptation is based on the estimated error (see Sect. 2.1) of
the three velocity components, and the buoyancy field. For each field a refinement criterion
(ζ ) is specified (ζui , ζb), where we non-dimensionalize the refinement criteria according to
ξb = ζbb

−1
0 and ξui = ζuiU

−1. In order to validate the results and assess the performance of
the adaptive solver, we iteratively decrease the refinement criterion between runs whilst we
limit the minimum grid-box size. This maximum resolution is inspired by Heerwaarden and
Mellado (2016), and to limit the degrees of freedom, we choose; ξu1 = ξu2 = ξu3 = 2.7×ξb.
We realize that this choice (based on trial and error) is rather arbitrary, as currently a solid
framework of how the refinement criteria should be chosen is still lacking. The results are
validated by a comparisonwith runs using a regular and fixed grid at themaximum resolution,
performed with the Basilisk andMicroHH flow solvers: MicroHH is the numerical code used
by Heerwaarden and Mellado (2016) to obtain their results. This code represents a state-of-
the-art flow solver that is dedicated to studying atmospheric systems (Heerwaarden and
Mellado 2016; Shapiro et al. 2016); for a detailed description of the MicroHH code see
Heerwaarden et al. (2017). In addition, the fixed grid results of the Basilisk and MicroHH
flow solvers are compared to each other.

We choose Pr = 1 and Re = 3000 with a domain size of 3L×3L×3L and simulate the
evolution of the system until the physical time t = 45T . In order to limit the computational
costs, the evolution of the Basilisk-based run with a fixed regular grid is only computed
until t = 10T . To illustrate the physical size of such a numerical experiment in reality; for
a domain size of 0.5 m × 0.5 m × 0.5 m and θref = 21 ◦C, the corresponding parameters

123



J. A. van Hooft et al.

Table 1 Overview of the different simulation run details. In the top section a reference name, the used solver,
grid type, the (maximal) numerical grid resolution, lateral boundary conditions and refinement criterion (ξb ,
if applicable) are listed for each run

Run name Code Grid nx × ny × nz (Maximal) Lateral BCs ξb

MicroHH MicroHH Fixed and stretched 5122 × 387 Periodic –

BA-5123 Basilisk Fixed 5123 Neumann and No-pen. –

BA-0.0025 Basilisk AMR 5123 Neumann and No-pen. 0.0025

BA-0.005 Basilisk AMR 5123 Neumann and No-pen. 0.005

BA-0.01 Basilisk AMR 5123 Neumann and No-pen. 0.01

Run name Number of cores Integration steps at t/T = {10, 45} Total wall clock time (D:HH:MM)

MicroHH 64 {13920, 35670} 0:12:22

BA-5123 64 {14073, (35670)} (estimated) 2:16:12 (t/T = 10)

BA-0.0025 96 {14095, 30144} 2:10:30

BA-0.005 96 {14061, 28704} 1:18:19

BA-0.01 96 {14167, 25544} 1:02:16

In the bottom section the used number of cores, the total amount of integration steps taken at t/T = {10, 45}
and the total wall clock time of each run are presented
Italic values indicate the estimated values

are: L = 0.16 m, θbottom = 36 ◦C and T = 153 s. This could be interpreted as a modest
laboratory experiment.

The simulations are performed with Surfsara’s supercomputer Cartesius located in Ams-
terdam, The Netherlands (SURE 2017). An overview of the different runs, including the
number of cores used, integration timesteps and total run time is listed in Table 1. Additional
information on the case set-up for both models can be found at:

Basilisk: http://basilisk.fr/sandbox/Antoonvh/freeconv.c1

MicroHH: https://github.com/microhh/microhh/tree/master/cases/vanheerwaarden2016

3 Results

3.1 Grid Structure

First, we study the evolution of the solution and grid structure qualitatively. Vertical slices
of the magnitude of the gradient of the buoyancy field (‖∇b‖) and the used grid at t =
{2, 10, 20}T for run BA-0.0025 are presented in Fig. 7. At t = 2T a complex grid structure
is generated by the AMR algorithm, and within the ABL the grid is refined at locations
where vigorous turbulent structures are present. Above the ABL (i.e. z/L > 1), turbulence
is absent and the grid is coarse. Both effects are appealing from a physical perspective as
the computations are focused on the regions where the activity is present. As the physical
time progresses, the boundary layer becomes more neutrally stratified and the turbulence
intensity decreases. And again, in response, the adaptive-grid algorithm has coarsened the

1 From a users’ perspective, the case definition for the adaptive-grid runs is (subjectively) not more involved
than the fixed-grid counterpart. The more complex adaptation-specific formulations are addressed by a low-
level part of the Basilisk toolbox that does not require explicit attention from the users’ side.
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Fig. 7 Vertical slices of the ‖∇b‖ field (left column) and the corresponding numerical grid (right column) in
the lowest half of the domain. The top, middle and bottom rows represent snapshots taken at t/T = {2, 10, 20},
respectively. These snapshots are taken from the adaptive-grid run BA-0.0025

grid at t = 10T . This remarkable effect is even more pronounced at t = 20T , where the
coarsened regions have grown in size, indicating that the number of grid cells decreases over
time. Physically speaking, this is facilitated by the fact that the size of the smallest eddies
increases as turbulence decays.

3.2 Validation

Next we compare the results obtained with the AMR and fixed-uniform-grid runs. Following
Heerwaarden andMellado (2016), we compare the domain integrated quantities: a boundary-
layer height zi that is based on the buoyancy profile, kinetic energy Ie, buoyancy flux Ib and
dissipation Iε according to,

zi = 2

N 2

∫ ∞
(〈b〉 − N 2z)dz, (11)

Iα =
∫ ∞

〈α〉dz, (12)
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Fig. 8 Time series of the domain integrated quantities, a boundary-layer height (zi ), b kinetic energy (Ie), c
buoyancy flux (IB ) and d dissipation rate (Iε ) according to Eq. 11. The results are obtained with both Basilisk
and MicroHH solvers using fixed grids and Basilisk using the adaptive mesh refinement algorithm. Note that
plots c, d use a logarithmic scale

where α is a dummy variable for {e, b, ε} and 〈α〉 denotes the horizontally-averaged value
of the quantity α. Figure 8a shows the evolution of the boundary-layer height, where good
agreement between all simulations is found. The boundary-layer height is an integral measure
of the amount of buoyancy (i.e. analogous to heat) in the system, though due to the case set-
up, this integral quantity is not a very sensitive measure to assess the accuracy of the resolved
turbulent motions. Therefore, we focus on higher-order statistics. In general, the evolution of
the total kinetic energy shows similar behaviour between all runs (see Fig. 8). Nevertheless
small discrepancies on the order of 5% are present, particularly between the runs with the
adaptive grid and thefixeduniformgrids, and as expected, this discrepancydecreaseswhen the
refinement criterion ismore strict. In order to analyze the evolution of kinetic energy in further
detail, Fig. 8c presents the evolution of the domain-integrated buoyancyflux,which represents
the energy-production rate for this system. The buoyancy flux agrees well for all different
runs and the observed differences between the runs are a result of turbulent fluctuations
within the chaotic system rather than systematic discrepancies. This indicates that the overall
structure and characteristics of the energy-producing motions are resolved accurately for all
runs, and for free convection, these motions are associated with the large thermal plumes. In
order to assess the representation of the small-scale structures in these simulations, Fig. 8d
presents the evolution of the resolved energy-dissipation rate. Compared to the fixed-grid
runs, the AMR-based runs slightly underestimate the resolved absolute dissipation, an aspect

123



Towards Adaptive Grids for Atmospheric Boundary-Layer…

0 0.01 0.02 0.03
e /(U2)

0

0.5

1

1.5

z/
L

t/T = 2

MicroHH
Basilisk BA-5123

Adaptive BA-0.0025
Adaptive BA-0.005
Adaptive BA-0.01

0 0.01 0.02 0.03
e /(U2)

0

0.5

1

1.5

z/
L

t/T = 4

0 2 × 10−3 4 × 10−3

e /(U2)

0

0.5

1

1.5

z/
L

t/T = 25(a) (b) (c)

Fig. 9 Vertical profiles of the horizontally-averaged kinetic energy (〈e〉) at t/T = {2, 4, 25} in left, middle
and right plot, respectively. The results are obtained with both Basilisk and MicroHH solvers using fixed grids
and Basilisk using the adaptive mesh refinement algorithm. Note that in panel c the horizontal axis is rescaled
and that regular-grid computations with the Basilisk solver are not available (see text, Sect. 2.4)

that is present throughout the simulation. Again, the discrepancy appears to be controlled
by the refinement criterion, for which using stricter (i.e. smaller) criteria the results seem to
converge towards the values found with the fixed-grid runs. The fact that the runs diagnosed
with a lower dissipation rate are also associated with lower kinetic energy indicates that a
small part of the dissipation has a numerical/non-physical origin.

Figure 9 shows the vertical profiles of the kinetic energy at t/T = {2, 4, 25}, and shows
discrepancies at t/T = 2 between all runs. The highly chaotic flow structure at this early
stage of the simulation could explain some of the differences. However, consistent with
Fig. 8b, the adaptive-grid runs show a systematically lower kinetic energy content over the
entire domain. At t/T = 4, the profiles of the fixed-grid runs agree well, and furthermore,
the energy found in the adaptive-grid run BA-0.0025 also compares well. It can be seen
from the time series in Fig. 8b that for t/T < 5, the evolution of kinetic energy shows large
fluctuations. Therefore, we also compare the energy profiles at t/T = 25, where we see
again that the fixed-grid run still contains more energy than the adaptive-grid runs. Again,
the adaptive run with the smallest refinement criterion is closest to the fixed-grid profile
compared to the other adaptive-grid runs.

Although it appears that the adaptive-grid algorithm is able to refine the grid at locations
of the turbulent structures, discrepancies in the simulation results remain present. This can
be explained by the fact that the process of refining and coarsening the mesh relies on a linear
interpolation strategy for defining values on new grid cells. This interpolation introduces
additional errors compared to a simulation that employs a static grid, and these errors are
similar to the truncation errors of fixed-grid advection schemes and thus lead to similar
additional numerical dissipation of energy. More accurate interpolation techniques could be
tested to limit the error due to interpolation; therefore, this relevant aspect will be studied in
more detail in the future.

3.3 Performance

As discussed in the introduction, for highly dynamic flow configurations such as a diurnal
cycle, model performance may benefit from the AMR approach. Although the present case
of decaying convection is less dynamic than a full diurnal cycle, it is tempting to compare the
simulation performance of the AMR-based run to its counterparts using a fixed and regular
grid. Thereupon, several performance characteristics are presented in Fig. 10. Figure 10a
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Fig. 10 Overview of the performance characteristics of the adaptive and fixed-grid simulation runs. a Time
series of the number of grid points for the adaptive runs normalized by the maximum-resolution value (i.e.
5123). b Scatter plot of the wall clock time per integration step versus the used number of grid cells in the
adaptive-grid runs. c The total amount of system billing units (SBU, i.e. number of cores×hours) spending
on each simulation run. Note that the value for BA-5123 is estimated as if it were run until t/T = 45. d The
total RAM memory used in each simulation run in gigabytes (GB)

shows, for the AMR-based runs, the evolution of the number of grid cells that appear to
be controlled by the refinement criterion, in which a smaller value causes the algorithm
to use a more refined grid. As illustrated in the snapshots of Fig. 7, the number of grid
cells varies significantly over the course of the simulation. Supposedly, the computational
resources are distributed more efficiently over time. Furthermore, even in the run with the
strictest refinement criterion, the number of grid cells does not exceed 21% of the maximum-
resolution value. Figure 10b shows how the computational speed (i.e. defined here as wall
clock time per integration timestep) is correlated with the number of grid cells. It appears
that there are several regimes in which the performance is affected by the number of grid
cells. For a large number of grid cells (i.e. > 106) the amount of integration timesteps per
second increaseswith a decreasing number of grid cells, indicating that the solver does indeed
speed up when the grid is coarsened. Note that the simulations apply many grid cells in the
early stage of the runs i.e. at the right-hand side of Fig. 10b and uses fewer cells as time
progresses (towards the left-hand side of Fig. 10b). However, as denoted by the x0.6-scaling
line, in this regime the simulation speed is not linearly dependent on the amount of grid cells.
Furthermore, for lower number of grid points (i.e. < 106) the simulation speed appears to
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decrease when the simulation runs with fewer grid cells, i.e. there is a performance penalty
for coarser grids! Possible causes for these performance characteristics are listed below:

1. For this case, the grid structure of the coarsened grids at later stages in the simulation
contains a relatively larger fraction of resolution boundaries (seeFig. 7). These boundaries
are associated with additional overhead as they require special attention by the solver
(see Sect. 2.1).

2. The number of used processors (linked to domain decomposition for parallelization)
is fixed throughout the simulations. Therefore, the relative overhead of MPI-domain
communication routines compared to actual calculations increases as the number of grid
cells decreases.

3. For coarse grids, the physical timestep taken per integration timestep increases (Courant–
Friedrichs–Lewy criterion). Diagnostic analysis of the solution is performed with a
regular interval in the physical time, i.e.Δt = T for profiles and slices andΔt = T/20 for
the domain-integrated quantities. The frequency of calls to diagnostic routines increases
(i.e. say, calls per 100 integration steps) on average resulting in an increased effort per
integration step.

In Fig. 10c the amount of system billing units (i.e. the used number of cores × hours)
spending for the different runs is presented. Before an interpretation of the results is made, it
is important to realize that the performance of a simulation run is a function of many aspects
that ranges from the details of the hardware configuration to the exact case set-up. There-
fore, the results presented here are intended as an illustration rather than as absolute values.
Nevertheless, it is clear that the MicroHH run is notably less computationally demanding
compared to the runs performed with the Basilisk solver. This can be explained by the dif-
ferent numerical schemes that are employed. Most notably, for obtaining the pressure field,
the Basilisk code uses a multigrid strategy for solving the corresponding Poisson equation
whereas the isotropic-fixed grid inMicroHH facilitates the usage of a spectral Poisson solver.
Although the spectral method requires more MPI communication for parallelization when
using a large number of processors, it is known to be more efficient (Fornberg 1998). If we
compare the adaptive and non-adaptive simulation runs performed with the Basilisk solver,
we do see a considerable decrease in computational costs for the adaptive method runs.

In Fig. 10d the memory used for the different simulation runs is presented, and compared
to the fixed-grid runs, the adaptive-grid runs require less memory. This is due to the fact that
the maximum number of grid cells is considerably lower than the number of grid cells in
the fixed-grid runs (see Fig. 10a). From this perspective, the adaptive-grid approach is also
attractive for applications where the available memory is limited. However, even though the
run withMicroHH employs many more grid cells, the required memory is comparable to that
of run BA-0.0025, meaning that per grid cell, the MicroHH code is more efficient in terms
of memory.

4 Outlook: Towards Adaptive Mesh Refinement in Atmospheric LES

We have based our test and performance benchmark on an idealized flow configuration of a
CBL using DNS, providing a ground truth for our intercomparison. In the future, we plan to
study more practically-oriented cases by using an LES formulation. For many atmospheric
cases, LES is preferred over DNS, because it provides an efficient tool for studying high-
Reynolds-number flows. Therefore, the next step is to test the AMR approach in combination
with an LES formulation. In this section, we briefly discuss some preliminary results on this
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topic. Because this is part of ongoing research, we do not perform a quantitative discussion
of the test runs, the results and performance characteristics. The presented results aim to
exemplify theAMRmethod for a different case and show the flexibility of theAMRapproach.
The example is based on the LES intercomparison study case by Bretherton et al. (1999), in
which a boundary layer is filled with a smoke cloud that cools from the top due to longwave
emission. The boundary layer is initially capped by a strong temperature inversion (i.e. 7 K
over 50 m) at z ≈ 700 m and rises over the course of the simulation due to entrainment.
The inversion layer is identified as a region where turbulent length scales are suppressed and
turbulent motions are anisotropic due to the stable stratification. As such, this region requires
a high resolution to capture the predominant turbulent structures accurately. In constrast, the
convective turbulence in the boundary layer itself can be captured on a relatively coarse grid
(Sullivan and Patton 2011). Accordingly, we decided not to base the grid adaptation upon
the estimated discretization error in the representation of the velocity-component fields, but
only on the estimated error in the smoke-cloud fraction and temperature fields. With such an
approach the AMR algorithm does not refine the mesh in order to resolve the small turbulent
structures in the near-neutral boundary layer, but allows the LES to employ the SGS model
effectively in this region. In this run, the numerical grid varies by three levels of refinement,
i.e. between 25 and 3.125 m. Figure 11 presents snapshots of the temperature and numerical
grid taken at t = 3 h after initialization. It is clear from Fig. 11a that an inversion layer is
present, while Fig. 11b shows that the numerical grid has a high resolution in the region of
the inversion layer and remains coarse in the boundary layer itself. Furthermore, we see the
subsiding shells in the boundary layer that are qualitatively similar to those observed in the
laboratory experiment performed by Jonker and Jiménez (2014).

For this case, the AMR algorithm dynamically adapts to the flow by redirecting the grid
refinement to those regions of the spatial domain where it is required. Hence in this case,
adaptation is predominantly spatially focussed, whereas in the DNS case the refinement
was most prominent in the temporal domain (see Fig. 10a). As such, both examples in this
study are complementary and both effects (spatial and temporal adaptive grid refinement)
are expected to play an important role in future simulations of full diurnal cycles (cf. Fig. 1).

Finally, we note the following; the present caseswhere restricted to spatially homogeneous
set-ups, where ‘scale separation’ naturally occurs through the internal variability of turbu-
lence, originating from the non-linearity of the governing equations. In reality, heterogeneity
in the surface boundary conditions also becomes important and provides an additional cause
of scale separation that may call for adaptive grid refinement. For example, refinement may
be preferred at sharp transitions between different types of land use, such as the land–sea
interface.

5 Discussion and Conclusions

We have introduced and tested an adaptive mesh refinement (AMR) method for studies of
the atmospheric boundary layer (ABL). This work is motivated by a desire to numerically
study highly dynamic cases. Such cases are characterized by a high degree of scale separation
throughout the spatial and temporal domain. This work should be viewed as the first step in
our AMR-based research that assesses the usage of an AMR method for studies of the ABL.
We have based our adaptive-grid simulations on the flow solver implemented in the Basilisk
code.
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The method is tested using DNS based on a case introduced by Heerwaarden andMellado
(2016), describing the growth and subsequent decay of a CBL. The AMR algorithm was able
to identify the time-varying turbulent regions in the domain and refined/coarsened the grid
accordingly. The AMR-based simulations can reproduce the simulation results of their fixed
grid counterparts with minor discrepancies. Furthermore, the AMR algorithm can be tuned
to apply more grid cells such that these discrepancies are suppressed. For all AMR runs, the
number of grid cells varies significantly over time, resulting in more efficient simulations
compared to using a regular fixed grid with identical numerical formulations. This provides
a proof of principle for the AMR method regarding ABL systems.

For this case, a numerical solver dedicated to ABL systems (MicroHH) outperformed all
other runs in terms of computational efficiency, indicating that there is an overhead associated
with the use of the adaptive solver. In general, the exact impact of this overhead depends
on the details of the studied case. The most challenging ABL systems typically owe their
complexity to the dynamical interplay between various processes at different length and time
scales. Hence, the AMR technique is likely to be more favourable as complexity increases.
More specifically, as discussed in Popinet (2011), the cost of an adaptive simulation, relative
to a constant resolution simulation (G) is expected to scale as

G = CaΔ
−D

CcΔ−3 = Ca

Cc
Δ3−D, (13)

where Ca and Cc are constants related to the absolute speed of the computation for the
adaptive- and constant-resolution simulations, respectively ; Δ is the ratio of the minimum
to the maximum scale of the physical system (i.e. a measure of scale separation) and D is
the effective (or fractal) dimension of the physical process (which is necessarily ≤ 3). In the
present study, Δ is relatively large (i.e of order 10−2) and the computational gain using the
adaptive method is correspondingly small, whereas for challenging cases Δ can be several
orders of magnitude smaller, with a correspondingly larger potential gain in efficiency of the
adaptive method relative to constant-resolution methods. This important aspect of the overall
scaling behaviour is illustrated in “Appendix 1” for a canonical flow set-up. The results shown
herein thus motivate our continued research using the AMR technique.
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Appendix 1: The Lid-Driven Cavity in Two Dimensions

We study the relation between the computational costs and the scale separation for a sim-
ulation of a fluid in a lid-driven cavity in two dimensions, and compare the results from
a regular fixed grid and the adaptive-grid-refinement approach as is presented herein. The
chosen physical set-up consists of a no-slip box (size L × L), in which an incompressible
fluid with kinematic viscosity ν is set in motion by the top lid that moves with a constant
velocity (Ulid ) in the left-to-right direction. It is well known that this configuration results
in a large circulation cell within the domain. With system parameters L , ν and Ulid we can
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Fig. 11 Snapshots of a the vertical slices of the virtual potential temperature field, and b the numerical grid
at t = 3 h. The case is based on Bretherton et al. (1999)

Fig. 12 Snapshots of a the vorticity field, and b the numerical grid at t = tend for the lid-driven cavity
simulation with Relid = 500

identify a Reynolds number (Relid ) according to

Relid = Ulid L

ν
. (14)

In order to study the effect of varying scale separation on the performance statistics, the
simulations cover a range of differentReynolds numbers. Following the analysis ofClercx and
Heijst (2017) on vortex-wall interactions in two dimensions, we take the (minimum) grid-box
size inversely proportional to the Reynolds number. As such, the Reynolds number represents
the separation of scales in our simulations (i.e. Δ in Eq. 13). The runs are initialized with the
fluid at rest and the flow evolution is simulated for a physical time tend = 20L/Ulid . For the
adaptive grid simulations, a refinement criterion for the velocity components ζ = 0.005Ulid

is chosen. All runs are performed using a single processor core. A snapshot of the vorticity
field and the corresponding grid structure at t = tend for Relid = 500 are presented in
Fig. 12. The maximum resolution of this simulation corresponds to a 256 × 256 grid. First,
the solution is validated against the results obtained with the fixed equidistant-grid runs
in Fig. 13. Here the vorticity fields (ω(x, y)) obtained from the fixed-grid and adaptive-grid
simulations are directly compared for the runs with Relid = {250, 500}.We conclude that the
chosen refinement criterion in sufficiently small to accurately reproduce the results obtained
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Fig. 13 Validation of the vorticity field (ω) from the adaptive grid simulation against the results obtained with
a fixed equidistant grid. For a Relid = 250, and b Relid = 500. The inserts show a zoom-in (i.e. rescaled
axes), containing ≈ 95% of the total number of data points

Fig. 14 The correlation of the
computational costs and the
Reynolds number (Relid ) for
different approaches. The green
line represents the theorized
results from a solver that is an
order of magnitude faster than the
fixed-grid approach that we have
used (blue dots)
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with the equidistant grid. Second, Fig. 14 presents the scaling of the computational costs
with the Reynolds number. The simulation costs when employing the fixed and equidistant
grid appear to scale with the third power of the Reynolds number. This exponent can be
understood from the fact that the total number of grid cells scales with the Reynolds number
to the second power (i.e. in 2D, doubling the resolution requires four times as many grid
cells). Furthermore, the well-known numerical stability criterion of Courant–Friedrichs–
Lewy limits the timestep and scales inversely proportional to the grid-box size, meaning
that the total number of timesteps is proportional to the Reynolds number. Combined, the
computational costs scale with the Reynolds number to the power of (2 space+ 1 time =)3.
This analysis holds for all equidistant-grid approaches, and as such, we can anticipate the
computational costs when using an equidistant-grid code that is an order of magnitude faster
than the solver we have chosen for our fixed-grid approach (i.e. the Basilisk solver running
in fixed-grid mode). Interestingly, with an increasing Reynolds number, the observed scaling
of the adaptive grid simulations is favourable compared to the equidistant grid counterpart.
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The observed scaling (i.e ∝ Re1.9) reflects that the resolution requirement is not space
filling. Although that for the lower Reynolds numbers (i.e. Re � 1000), the (theorized)
fast equidistant-grid solver is more efficient than the adaptive grid approach, there exists a
crossing point where the latter technique becomes the more effective option. This feature
is indicative to all processes in nature. in which, with an increasing scale separation, the
space-filling approach of an equidistant grid represents the worst-case scenario, neglecting
the so-called fractal dimension of the problem. Note that this concept also applies to three-
dimensional turbulence (see Chap. 8 in Frisch 1995). However, the corresponding scaling
behaviour for ABL cases is not obvious.

References

Abkar M, Sharifi A, Port-Agel F (2015) Large-eddy simulation of the diurnal variation of wake flows in a
finite-size wind farm. J Phys Conf Ser 625(1):012–031

Ansorge C, Mellado JP (2016) Analyses of external and global intermittency in the logarithmic layer of ekman
flow. J Fluid Mech 805:611–635

BasuS,Vinuesa JF, SwiftA (2008)Dynamic lesmodeling of a diurnal cycle. JApplMeteorolClim47(4):1156–
1174

Beare R, Macvean M, Holtslag A, Cuxart J, Esau I, Golaz JC, Jimenez M, Khairoutdinov M, Kosovic B,
LewellenD, Lund T, Lundquist J,McCabeA,MoeneA,NohY, Raasch S, Sullivan P (2006)An intercom-
parisonof large-eddy simulations of the stable boundary layer.Boundary-LayerMeteorol 118(2):247–272

Bou-Zeid E (2015) Challenging the large eddy simulation technique with advanced a posteriori tests. J Fluid
Mech 764:1–4

BrethertonC,MacveanM,BechtoldP,ChlondA,CottonW,Cuxart J, CuijpersH,KhairoutdinovM,KosovicB,
LewellenD,MoengCH, Siebesma P, Stevens B, StevensD, Sykes I,WyantM (1999) An intercomparison
of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical
models. Q J R Meteorol Soc 125(554):391–423

Clercx H, van Heijst G (2017) Dissipation of coherent structures in confined two-dimensional turbulence.
Phys Fluids 29(11):111–103

de Lozar A, Mellado JP (2015) Mixing driven by radiative and evaporative cooling at the stratocumulus top.
J Atmos Sci 72(12):4681–4700

de Roode SR, Jonker HJ, van de Wiel BJ, Vertregt V, Perrin V (2017) A diagnosis of excessive mixing in
smagorinsky subfilter-scale turbulent kinetic energy models. J Atmos Sci 74(5):1495–1511

DeRoode SR, Sandu I, VanDerDussen JJ, AckermanAS, Blossey P, JareckaD, LockA, SiebesmaAP, Stevens
B (2016)Large-eddy simulations of euclipse-gass lagrangian stratocumulus-to-cumulus transitions:mean
state, turbulence, and decoupling. J Atmos Sci 73(6):2485–2508

Fedorovich E, Conzemius R, Esau I, Chow F, Lewellen D, Moeng C, Pino D, Sullivan P, Vila-Guerau de
Arellano J (2004) Entrainment into sheared convective boundary layers as predicted by different large
eddy simulation codes. In: P4.7 16th AMS symposium on boundary layers and turbulence, American
Meteorological Society, Portland, ME, USA (preprints)

FornbergB (1998)Apractical guide to pseudospectralmethods, vol 1.CambridgeUniversityPress,Cambridge,
UK

Frisch U (1995) Turbulence: the legacy of AN Kolmogorov, chap 8. Cambridge University Press, Cambridge,
UK, pp 120–194

Fuster D, Agbaglah G, Josserand C, Popinet S, Zaleski S (2009) Numerical simulation of droplets, bubbles
and waves: state of the art. Fluid Dyn Res 41(6):065–001

Garcia JR, Mellado JP (2014) The two-layer structure of the entrainment zone in the convective boundary
layer. J Atmos Sci 71(6):1935–1955

Griebel M, Zumbusch G (2001) Hash based adaptive parallel multilevel methods with space-filling curves. In:
NIC Symposium, vol 9, pp 479–492

Heus T, van Heerwaarden CC, Jonker HJJ, Siebesma AP, Axelsen S, van den Dries K, Geoffroy O, Moene AF,
PinoD, de Roode SR, Vilà-Guerau deArellano J (2010) Formulation of the dutch atmospheric large-eddy
simulation (dales) and overview of its applications. Geosci Model Dev 3(2):415–444

Jonker HJ, Jiménez MA (2014) Laboratory experiments on convective entrainment using a saline water tank.
Boundary-Layer Meteorol 151(3):479–500

123



Towards Adaptive Grids for Atmospheric Boundary-Layer…

Kumar V, Kleissl J, Meneveau C, Parlange MB (2006) Large-eddy simulation of a diurnal cycle of the atmo-
spheric boundary layer: atmospheric stability and scaling issues. Water Resour Res 42(6):w06D09

Lagrée PY, Staron L, Popinet S (2011) The granular column collapse as a continuum: validity of a two-
dimensional Navier–Stokes model with a μ (i)-rheology. J Fluid Mech 686:378–408

LiY, Perlman E,WanM,YangY,MeneveauC, Burns R, Chen S, SzalayA, EyinkG (2008)A public turbulence
database cluster and applications to study lagrangian evolution of velocity increments in turbulence. J
Turbul 9:31

López-Herrera J, Popinet S, Herrada M (2011) A charge-conservative approach for simulating electrohydro-
dynamic two-phase flows using volume-of-fluid. J Comput Phys 230(5):1939–1955

Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, Vilà-Guerau de Arellano J, Durand P,
Hartogensis O, Legain D, Augustin P, Gioli B, Lenschow DH, Faloona I, Yagüe C, Alexander DC,
Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van de Boer A, Boichard
JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre
H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jiménez
MA, Jonassen M, van den Kroonenberg A, Magliulo V, Martin S, Martinez D, Mastrorillo L, Moene
AF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, Román-Cascón C, Rufin-Soler C, Saïd F,
Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N,
Zaldei A (2014) The bllast field experiment: boundary-layer late afternoon and sunset turbulence. Atmos
Chem Phys 14(20):10,931–10,960
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