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Abstract We investigate the scaling behaviour of a turbulent kinetic energy (TKE) clo-
sure model for stably stratified conditions. The mixing length scale for stable stratification is
proportional to the ratio of the square root of the TKE and the local Brunt–Väisälä frequency,
which is a commonly applied formulation. We analyze the scaling behaviour of our model
in terms of traditional Monin–Obukov Similarity Theory and local scaling. From the model
equations, we derive expressions for the stable limit behaviour of the flux–gradient relations
and other scaling quantities. It turns out that the scaling behaviour depends on only a few
model parameters and that the results obey local scaling theory. The analytical findings are
illustrated with model simulations for the second GABLS intercomparison study. We also
investigate solutions for the case in which an empirical correction function is used to express
the eddy diffusivity for momentum as a function of the Richardson number (i.e. an increas-
ing turbulent Prandtl number with stability). In this case, it seems that for certain parameter
combinations the model cannot generate a steady-state solution. At the same time, its scal-
ing behaviour becomes unrealistic. This shows that the inclusion of empirical correction
functions may have large and undesired consequences for the model behaviour.

Keywords Closure model · Monin–Obukhov Similarity Theory · Parameterization ·
Stable boundary layer · Turbulent kinetic energy

1 Introduction

Turbulent motions transport momentum, heat and trace gases vertically through the boundary
layer, which forms the connection between the earth’s surface and the free atmosphere. A
proper modelling of these exchange processes is of vital importance for accurate numerical
weather prediction (NWP) and climate modelling (Weng and Taylor 2003). Despite decennia

P. Baas (B) · S. R. de Roode · G. Lenderink
Regional Climate Section, Royal Netherlands Meteorological Institute, Wilhelminalaan 10, P.O. Box 201,
3730 AE, De Bilt, The Netherlands
e-mail: peter.baas@knmi.nl

123



P. Baas et al.

of research, modelling turbulent motions in a satisfactory way is still challenging, especially
in the stable boundary layer (Holtslag 2006). Here mechanisms such as radiation divergence,
slope flows, gravity waves and an increased sensitivity to surface heterogeneity add com-
plications for the flow description (Mahrt et al. 1998). To account for turbulent motions, in
many atmospheric models Reynolds decomposition is applied, which involves separation of
the flow into a mean part and a turbulent or subgrid part. As a result, every prognostic equa-
tion for a mean variable contains at least one unknown turbulence flux term. This problem is
known as the closure problem (e.g. Stull 1988).

A commonly applied method to close the system is the eddy-diffusivity approach, where
the vertical turbulent flux w′ψ ′ is taken proportionally to an eddy diffusivity, Kψ , and the
vertical gradient of the mean value of the variable ψ :

w′ψ ′ = −Kψ
∂ψ

∂z
. (1)

Often Kψ is expressed as a function of stability by applying semi-empirical stability func-
tions (e.g. Holtslag 1998), and because only the equations for the mean variables are solved,
this method is called first-order closure.

In a more advanced approach, Kψ can be made a function of the turbulence itself. This
turbulent kinetic energy (TKE) closure accounts better for the turbulent character of the flow
(e.g. Basu et al. 1998) and is termed 1.5-order closure. Besides prognostic equations for the
mean quantities, TKE-closure models also contain a prognostic equation for TKE. In TKE-l
models the eddy diffusivities depend on TKE (or E) and a diagnostic length scale, lψ :

Kψ = lψ
√

E . (2)

The closure problem now consists of finding appropriate expressions for the length scale, yet
to date no consensus exists on how to model this quantity. Many different forms are proposed
in the literature, often based on simple physical concepts and/or ad-hoc matching arguments
(Bougeault and Lacarrère 1989; Brinkop and Roeckner 1995; Cuxart et al. 2000; Lenderink
and Holtslag 2004; henceforth LH04).

In principle, much more complex closure models can be derived (see, for an overview,
Weng and Taylor 2003; Umlauf and Burchard 2005). Relatively simple 1.5- and second-order
closure models based on the work of Mellor and Yamada (1974) are frequently applied. By
comparing model output with large-eddy simulation data, Canuto et al. (2001) and Cheng et al.
(2002) point to deficiencies of this type of model. They propose improved closure schemes by
adding more advanced physics. However, even the implementation of 1.5-order or ordinary
second-order closure models in NWP models is often rather complex. Practical difficulties
involve the numerics (instability), constraints due to the computational costs (complexity,
timestep and resolution), and the requirement to have robust behaviour over the full range of
atmospheric conditions (see e.g. Lenderink et al. 2004). It is therefore questionable whether
more advanced physics outweighs the potentially less robustness of such complex models
(Weng and Taylor 2003).

In this study we make use of the single column version of the Regional Atmospheric Cli-
mate Model (RACMO2), in operation at KNMI (Lenderink et al. 2003). A TKE scheme was
implemented in this model, in particular to improve the representation of cloudy boundary
layers. Here we study consequences for the stable boundary layer. Recent intercomparison
studies have shown that in stable conditions TKE models perform well compared to first-
order closure research models (Cuxart et al. 2006; Steeneveld et al. 2007). However, the
scaling behaviour of TKE models has received little attention in the literature. For example,
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it is not clear to what extent such models obey well-established Monin–Obukhov Similarity
Theory (MOST), especially on a relatively coarse vertical grid resolution.

This study investigates the stable boundary layer (SBL) scaling behaviour of a TKE-l
scheme with a commonly used length scale in terms of traditional MOST and local scaling.
In particular, it is questioned whether this behaviour is realistic and to what extent it can be
controlled. To put it differently, we want to establish how TKE closure relates to the more
simple first-order closure. Section 2 provides some background on MOST and model closure.
In Sect. 3 the TKE scheme is described, and starting from the model equations, in Sect. 4
we derive expressions for the stable limit of the flux–gradient relations. Section 5 illustrates
the analytical findings with model integrations for the second GEWEX Atmospheric Bound-
ary Layer Studies (GABLS; Holtslag 2006) intercomparison case. The results are compared
with scaling relations obtained from observations. It will be argued that our model can be
considered a reduced version of the full second-order Nieuwstadt (1984) model. To see how
the simplifications affect the model’s scaling behaviour we compare some of our results
with those of Nieuwstadt (1984). After discussing the results in Sect. 6, the conclusions are
summarized in Sect. 7.

2 Background

In first-order closure models, K is often expressed as (e.g. Duynkerke 1991; Holtslag 1998):

Kψ = l2

∣
∣
∣
∣
∣

∂ �V
∂z

∣
∣
∣
∣
∣

Fψ
(

Rig
)

, (3)

where l is a mixing length, and, for example, in near neutral conditions is expressed as κz. Fψ
is a correction function that accounts for effects of stratification, depending on the gradient
Richardson number, Rig ,

Rig =
(

g
θv

)
∂θv
∂z

(
∂u
∂z

)2 +
(
∂v
∂z

)2 . (4)

The shape of Fψ can be obtained by using similarity theory. We focus on the local scaling
theory of Nieuwstadt (1984), which can be considered as an extension of the surface-based
MOST with local fluxes replacing surface fluxes. According to the local scaling approach,
each dimensionless group is a only a function of the stability parameter z/�,

z

�
= ζ =

−κz g
θv
w′θ ′

v

u3∗
, (5)

where� is the local Obukhov length, u∗ is the friction velocity andw′θ ′
v is the virtual potential

temperature flux. The dimensionless shear, φm (Eq. 6) and the dimensionless virtual potential
temperature gradient, φh (Eq. 7) are defined by

φm (ζ ) = κz

u∗
[

(∂u/∂z)2 + (∂v/∂z)2
]1/2

(6)

and,

φh (ζ ) =
(
κz

θ∗

)
∂θv

∂z
, (7)
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Fig. 1 Selected flux–gradient relations for momentum (a) and heat (b) from the literature. BD: Businger–
Dyer; D91: Duynkerke (1991); BH91: Beljaars and Holtslag (1991); rLTG: revised Louis–Tiedtke–Geleyn,
taken from Viterbo et al. (1999)

where θ∗ = −w′θ ′
v/u∗ is a turbulent temperature scale and the subscripts m and h refer to

momentum and heat, respectively. The shape of these flux–gradient relations or φ functions
must be determined by experiment. For very strong stratification it can be argued that the size
of the turbulent eddies is not related to the height above the surface, and therefore, z drops
as a relevant parameter for large values of z/�. In this stable limit of local scaling theory
the dimensionless gradients become proportional to z/�, yielding linear φ functions. This
regime is referred to as z-less scaling (Nieuwstadt 1984). A linear interpolation between the
neutral and the very stable limit gives φm,h = 1 + βm,hz/� (Zilitinkevich and Esau 2007).

Figure 1 gives some examples of flux–gradient relations that have been proposed in the
literature (Businger et al. 1971; Dyer 1974; Duynkerke 1991; Beljaars and Holtslag 1991
(henceforth BH91); Viterbo et al. 1999). We will compare the scaling behaviour of our model
with these proposed flux–gradient functions. As will be discussed below, contrary to the other
formulations, the revised Louis–Tiedke–Geleyn (rLTG) functions proposed by Viterbo et al.
(1999) are not based on experimental data but on large-scale model performance.

For weakly stable conditions, when turbulence is continuous, most studies agree on the
Businger–Dyer functions (Businger et al. 1971; Dyer 1974), which state that φm = φh =
1 + 5ζ . However, when ζ becomes larger than about 1 the observations start to level off and
the proposed formulations diverge (see Högström 1988; Andreas 2002 for a review). In this
regime with very strong stratification turbulence becomes patchy and intermittent (Mahrt
et al. 1998), thus violating basic assumptions underlying MOST. This may explain the devi-
ation of the φ functions from the linear relation (Cheng et al. 2005). Mahrt (2007) shows
that nonstationarity promotes this levelling off of the flux–gradient relations. Note that the φ
functions are seriously affected by self-correlation because the occurrence of u∗ in both z/L
and φm and φh (e.g. Baas et al. 2006).

The following equations relate Rig and the flux-Richardson number, Rif (which is the
ratio of the buoyancy destruction and the shear production in the TKE equation) to the
flux–gradient relations (see e.g. Duynkerke and de Roode 2001):

Rig = ζ
φh

φ2
m
, (8)

123



Turbulent Kinetic Energy Closure Model

Rif = ζ

φm
. (9)

The maximum value of Rif is 1, i.e. the buoyancy destruction can never be larger than the
shear production. In Fig. 1 the dashed area indicates where this theoretical demand is vio-
lated. The functions of both BH91 and rLTG approach Rif = 1 in their stable limit. The
turbulent Prandtl number, Pr is defined by

Pr = Km

Kh
= φh

φm
= Rig

Rif
. (10)

The shape of Fψ follows directly from the φ functions:

Fψ = 1

φm (ζ ) φψ (ζ )
. (11)

By Eq. 8 Fψ becomes a function of Rig . However, when observationally based stability
functions (e.g. BH91) are applied in operational models, model performance deteriorates
(Beljaars and Viterbo 1998): nighttime minimum temperatures tend to be too low and mid-
latitude cyclones tend to become too vigorous. To avoid these problems the stability functions
are tuned to obtain optimal model performance: widely used are the rLTG functions proposed
by Viterbo et al. (1999), based on work by Louis et al. (1982). It seems that large-scale models
need much more mixing than can be motivated by observations from field experiments. Dif-
ferences between observed mixing characteristics and the mixing that is apparently needed
by operational models may be explained by surface heterogeneity (Mahrt 1987; McCabe and
Brown 2007) and small-scale gravity wave drag (Chimonas and Nappo 1989). Unfortunately,
this so-called ‘enhanced mixing’ severely deteriorates the stable boundary-layer structure.
Typically the boundary layer becomes too thick and the low-level jet spreads out with height
(Cheng et al. 2005; Cuxart et al. 2006). Implementing a TKE-closure scheme does not solve
the problem: good operational model performance and a realistic boundary-layer structure
at the same time are still hard to achieve (Jones et al. 2003).

3 Model Description

In this section we describe the vertical diffusion scheme of our model for stable stratifi-
cation. Assuming horizontally homogeneous conditions, the prognostic TKE equation (e.g.
Stull 1988) is given by:

∂E

∂t
= −

(

u′w′ ∂u

∂z
+ v′w′ ∂v

∂z

)

+ g

θv
w′θ ′

v − ∂

∂z

(

w′E + w′ p′/ρ
)

− ε, (12)

where the terms on the right-hand side represent production due to the wind shear and the
buoyancy, the transport of TKE and the dissipation respectively. These terms are parameter-
ized according to
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−
(

u′w′ ∂u

∂z
+ v′w′ ∂v

∂z

)

= Km

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]

= Km S2, (13a)

g

θv
w′θ ′

v = −Kh
g

θv

∂θv

∂z
= −Kh N 2, (13b)

−
(

w′E + w′ p′/ρ
)

= 2Km
∂E

∂z
, (13c)

ε = cd
E3/2

lm
. (13d)

Note the definitions of the Brunt–Väisälä frequency, N and the vertical wind shear, S. For
stably stratified conditions, the length scale in the model is given by

1

lm,h
= 1

cnκz
+ 1

ls
, (14)

and in the limit of neutral stratification this reduces to cnκz. The surface boundary condition
for TKE is given by

Esur f = c0 u2∗ + 0.2w2∗, (15)

where c0 = 3.75 (Wyngaard and Coté 1971) is an empirical parameter and w∗ is the con-
vective velocity scale, which can be neglected in stable conditions. From a surface-layer
matching procedure, LH04 show that cd = c−2

o = 0.0711. After correcting for differences
in the definition of the length scale used (most constant pre-factors), this value is equivalent
to those used in, for example, Cuxart et al. (2000) and Brinkop and Roeckner (1995). In an
analogous way Mailot and Benoit (1982) show that the value of cn = 0.516. We refer to
LH04 for more details. The length scale for stable stratification (Deardorff 1980),

ls = cm,h

√
E

N
, (16)

dominates in the very stable regime. The mixing efficiencies cm,h are model parameters that
are not necessarily the same; LH04 take ch = 0.2 as a reference value. The parameter ch not
only regulates the vertical diffusion in the stable boundary layer, it also affects the entrain-
ment rate (Brinkop and Roeckner 1995; Lenderink and Holtslag 2000). The optimal value
for ch seems to vary with boundary-layer regime (Lock and Mailhot 2006).

With increasing stability, it is often argued that momentum is mixed more efficiently than
heat, probably due to wave activity (Kondo et al. 1978; Kim and Mahrt 1992). This process
is taken into account by expressing Pr as a function of Rig (LH04):

cm = ch Pr = ch(1 + cp Rig). (17)

Data presented by Kim and Mahrt (1992) and Schumann and Gerz (1995) suggest a value of
cp that ranges from 2 to 4. However, other studies, as for example Howell and Sun (1999), do
not find a clear dependency of Pr on stability. Note that spurious self-correlation stimulates a
positive correlation between Pr and Rig , preventing examination of the physical significance
of this relationship (Mahrt 2007). In this study we vary cp between 0 and 2. In NWP practice,
the values of constants such as cp are most often based on optimal model performance rather
than on sound values from the laboratory or field experiments. By expressing cm as a function
of stability, Jones et al. (2003) obtain a large reduction in the root-mean-square and the bias
of the mean sea level pressure and the geopotential with a comparable diffusion scheme,
implemented in a 3D version of the Hirlam model.
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4 Analytical Solution for the Stable Limit of the TKE Model

We analyze the scaling behaviour of the model for very strong stratification by deriving
expressions for the slope of the φ functions from the model equations. For strong strati-
fication, the length scale is determined by ls (Eq. 16). Then the eddy diffusivities can be
expressed as

Km,h = ls
√

E = cm,h
E

N
. (18)

Following Eq. 13 the parameterized TKE equation becomes

∂E

∂t
= Km S2 − Kh N 2 − cd

E
3
2

lm
. (19)

In this analytical analysis, we neglect the transport term for simplicity. In Sect. 5, we compare
the analytical results with numerical simulations of the TKE model using the complete set
of equations. The output shows that for stable conditions the transport term is indeed very
small in the model, which justifies this assumption in the context of our model. Although in
reality the transport term is generally small in the SBL (e.g. Nieuwstadt 1984), under certain
conditions (e.g. intermittency) it can be considerable (Cuxart et al. 2002).

After using the eddy diffusivities (Eq. 18), the length scale (Eq. 16) and using Eqs. 9, 10
and 17, Eq. 19 can be written as

∂E

∂t
= ch E N

[
cm

ch

1

Rig
−

(

1 + cd

cmch

)]

= ch E N

[
φm

ζ
−

(

1 + cd

cmch

)]

. (20)

In Sect. 4.1 we consider the situation where Pr is constant, and then study the consequences
of an increasing Pr with stability in Sect. 4.2. Section 4.3 discusses some complications that
arise with the current stability dependency of Pr.

4.1 Pr is Constant

Assuming a stationary state, Eq. 20 leads to a simple expression for the slope of the φ func-
tions that only depends on model parameters. In the case that cm and ch are constants it
follows that

φm

ζ
= 1 + cd

cmch
(21)

and
φh

ζ
= cm

ch

φm

ζ
= cm

ch
+ cd

c2
h

. (22)

Since this equilibrium (stable limit) solution contains just model constants it states that φm

becomes linear with ζ , which agrees with the asymptotic limit of local scaling theory (z-less
scaling). Using Eq. 8, the corresponding critical Rig can be expressed as

Rig = 1
ch
cm

+ cd
c2

m

. (23)

For example, if we set cm = ch = 0.13 we obtain φm = φh = 5ζ , which is the stable limit
of the Businger–Dyer relations. The corresponding critical Rig = 0.2.

It should be noted that the concept of a critical Rig (which was often assumed to be
about 0.25) is debatable. Numerous experimental studies show turbulent activity at values
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of Rig > 1 (e.g. Kondo et al. 1978; Kim and Mahrt 1992; Zilitinkevich et al. 2007). Rather
than having a strict critical Rig above which a flow is always laminar, a transition regime
can be identified separating a weakly stable (Rig < O(0.1)) and a very stable regime (Rig >
O(1)) (see theoretical analysis in Zilitinkevich et al. (2007), and data analysis in op. cit. and
Mauritsen and Svensson 2007). In the former regime turbulence is strong and MOST can
be applied, contrary to the latter regime where turbulent motions do exist but are weak and
nonstationair (Mahrt et al. 1998). Bertin et al. (1997) suggest that Rif rather than Rig is the
relevant parameter for defining the eddy diffusivity.

4.2 Pr Increases with Stability

To allow for an increasing Pr with stability, we take into account Eq. 17. By using Eq. 10 we
can express cm (which is no longer a constant) as

cm = ch
(

1 + cp Rig
) = ch

(

1 + cp
cm

ch
Rif

)

. (24)

Solving for cm (and using Eq. 9) gives this parameter in terms of model constants and φm/ζ :

cm = ch
(

1 − cp
ζ
φm

) . (25)

Combining Eqs. 21 and 25 leads to a quadratic equation, with solutions

φm

ζ
= 1

2

(

1 + cd

c2
h

)

± 1

2

√
√
√
√

(

1 + cd

c2
h

)2

− 4cp
cd

c2
h

. (26)

Equation 26 gives the slope of φm(ζ ) in the stable limit as only a function of ch and cp . For
φh it can be shown that

φh

ζ
= cm

ch

φm

ζ
= cd

c2
h

+ 1
(

1 − cp
ζ
φm

) . (27)

Equations 26 and 27 reduce to Eqs. 21 and 22 for cp = 0, providing that cm = ch . The
‘minus-solution’ in Eq. 26 is never followed by the model and has no physical meaning since
it causes φh/ζ < 0 (in most cases), i.e. it requires an unstable stratification in the considered
stable limit. Therefore in the following we focus on the ‘plus-solutions’ of Eqs. 26 and 27.
Figure 2 presents lines of equal φm/ζ and φh/ζ as a function of ch and cp . Regime I indicates
the parameter space where the model obeys local scaling theory. In regimes II and III this
is not the case: these situations correspond to parameter combinations for which no steady
state solution exists or which do not have a physical meaning. These last two regimes are
discussed in the next sub-section.

4.3 Comments on the Current Formulation of Pr versus Stability

Due to the dependency of cm on φm/ζ itself, the relation for φm/ζ (Eq. 26) becomes qua-
dratic. Consequently the solution of this equation contains a square root, which can become
negative for certain combinations of ch and cp . It turns out that the system only has a real
solution for

cp ≤ 1

2
+ cd

4c2
h

+ c2
h

4cd
. (28)
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Fig. 2 Contour plots of φm/ζ (a) and φh/ζ (b) as a function of ch and cp following the ‘plus-solutions’ of
Eqs. 26 and 27, which indicate the slope of the φ functions in the stable limit. In regime I the model obeys
local scaling theory. Regime II indicates parameter combinations were no stable limit solution exists. The
solutions in regime III have no physical meaning since values for φh/ζ are negative and φm/ζ < 1 (Rif > 1)

This is indicated in Fig. 2, which separates the real and imaginary solutions of Eq. 25:
apparently, in regime II a strictly stable limit solution does not exist.

To obtain more insight in why a parameter range without a real solution exists, we further
analyze the stable limit of the TKE equation. By using Eq. 18 for the eddy diffusivities and
Eq. 17 for cm , the stationary TKE equation (19) can be written as

[

1 + cp
N 2

S2

]

ch S2 − ch N 2 − cd

ch

N 2
[

1 + cp
N 2

S2

] = 0 (29)

For increasing cp the buoyancy term is unaffected but the shear term becomes larger and the
dissipation becomes smaller. It turns out that when cp exceeds the threshold value imposed
by Eq. 28, the shear term becomes so large that the buoyancy destruction and the dissipation
cannot balance the shear production anymore, indicating that a steady-state solution is no
longer possible and ∂E/∂t > 0. Note that the extra shear production scales with the buoyancy
destruction. For cp = 1 the buoyancy destruction is fully compensated by the extra shear
production and ‘vanishes’.
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A second problem, raised by Eq. 27, is that the value of φh/ζ might become negative, and
this turns out to be the case in regime III of Fig. 2, when ch > 0.26 and cp > 1. Note that
φm/ζ < 1 in this regime, corresponding to the unphysical Rif > 1.

Equation 29 can be expressed as a quadratic equation in Rig . Solving gives an expression
for the critical Rig as a function of only ch and cp:

Rig = −
2cp − 1 − cd

c2
h

2cp
(

cp − 1
) ± 1

2cp
(

cp − 1
)

√
√
√
√

(

1 + cd

c2
h

)2

− 4cp
cd

c2
h

, (30)

where only the ‘minus-solution’ gives realistic values. In the case of cp = 0, Eq. 29 simply
reduces to Eq. 23. Also for cp = 1, Eq. 29 reduces to a linear equation. Values for the critical
Rig can be obtained by taking the limit of cp → 1 in Eq. 30 as well.

5 Comparison of the Analytical Solutions with Model Simulations of the TKE Model

We compare the analytical solutions for the stable limit (obtained in Sect. 4) with model
simulations of the full TKE model (Sect. 3) for the second GABLS intercomparison study
(Svensson and Holtslag 2006). This case is based on observations from the CASES-99 mea-
surement campaign (Poulos et al. 2002), which was organized in October 1999 in Kansas,
U.S.A (37.65◦N, 96.74◦W; 440 m a.s.l.). A constant geostrophic forcing is applied and the
surface temperature is prescribed as a function of time. The simulation time is 59 h, starting at
1400 local time and we use a high vertical resolution of about 5 m. The timestep is 300 s. For
our analysis we only use model output from the lowest 40 levels, i.e. below 200 m. Because
it is often argued that the results of TKE models depend relatively strongly on vertical reso-
lution we also performed some runs on low resolution. When the number of levels is reduced
to 60 (one level about each 40 m close to the surface) exactly the same scaling results are
obtained, indication that the conclusions are also applicable for operational resolutions. Also
the vertical wind profiles of the low resolution runs give similar results as the ones with high
resolution. We stress that we focus on the scaling behaviour of the model and not on simu-
lating the observations. For such a study we refer to Steeneveld et al. (2006) who analyzed
almost the same period in great detail.

The TKE model is run with four different combinations of ch and cp as defined in Table 1.
For ch the value of 0.13 was chosen because this predicts φm,h = 5ζ for cp = 0 in the
stable limit. The current operational value for ch is 0.2. For Case D no analytical stable limit
solution exists. From the model output we will diagnose flux–gradient relations (and stability
functions) and compare the scaling behaviour of our model with the more advanced model
of Nieuwstadt (1984). Finally some quantities related to the boundary-layer structure will
be investigated. Table 2 summarizes all obtained stable limit solutions for the four defined
cases.

5.1 Flux–Gradient Relations

Figure 3 shows flux–gradient relations for the four different combinations of ch and cp

defined in Table 1. Apart from case D, for which no analytical solution exists, in all cases the
φ functions approach the predicted stable limit (Table 2). For increasing ch the φ functions
become less steep, increasing cp causes φm and φh to diverge. Obviously, for a near-neutral
stratification the φ functions deviate from the stable limit solution and the neutral length
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Table 1 Characteristics of the
four model runs

ch cp Remarks

A 0.13 0 No Pr dependency;
φm = φh = 5ζ in
the stable limit

B 0.13 1 Pr = 1 + Rig
C 0.2 1 Current operational

values
D 0.2 2 No analytical solution

Table 2 Stable limit solutions
for the model runs A, B and C
defined Table 1

Case D has no analytical
solution. For comparison, values
for the N84 model are added

A B C N84

φm/ζ 5.0 4.0 1.8
φh/ζ 5.0 5.4 4.1
Rig 0.20 0.33 1.29 0.218
(2E)1/2/u∗ 2.59 2.54 2.23 2.8
Km/(Lu∗) 0.08 0.10 0.22 0.08
Kh/(Lu∗) 0.08 0.07 0.10 0.08

      .
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Rif  > 1
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Fig. 3 Flux–gradient relationships for momentum (a) and heat (b) as diagnosed from model output for four
different combinations of ch and cp

scale forces them to be 1. When ζ becomes larger than about 1.5, the influence of the neutral
length scale becomes very small.

A comparison with φ functions from the literature (see Fig. 1) shows that for ζ < 1 the
observations correspond best with cases A and B. However, experimentally obtained flux–
gradient relations tend to level off for larger stabilities as for example the D91 and the BH91
functions (Fig. 1). Consequently, for increasing ζ the cases A and B deviate from observed
values. When stratification is very strong, case C is closest to the observations.

For case D no analytical stable limit solution exists. Figure 3 shows that in this case φm

increases only very slowly and that the increase in φh is more than linear with stability,
which does not agree with observations. Surprisingly, comparison with Fig. 1 shows that
this behaviour is well comparable to the rLTG functions. In fact, from Eqs. 9 and 10 it can
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Fig. 4 Stability functions for momentum (a) and heat (b) for the different model simulations A–D defined
in Table 1. For comparison two proposals from the literature are added: the dashed line represents the revised
LTG functions, the solid line the Beljaars–Holtslag (1991) functions

be shown that a more than linear increase of φh(ζ ) is inevitable when one wants to fulfil
Rif < 1 and at the same time let Rig → ∞ in the stable limit.

5.2 Stability Functions

Stability functions for momentum and heat are given in Fig. 4. The model simulations with
low ch (0.13) have a low critical Rig , above which all turbulence is switched off. They are
well comparable with the BH91 functions, in the sense that mixing decreases rapidly with
increasing Rig . Note that the BH91 functions were formulated in such a way that no critical
Rig exists. For case C mixing is suppressed more slowly, but still a critical Rig exists at about
1.3. The fact that for case D no stable limit solution exists is consistent with the lack of a
critical Rig . The stability functions for this case are comparable with the rLTG functions,
thus showing characteristics of ‘enhanced mixing’. As such, case D is not expected to give
realistic results in terms of stable boundary-layer structure.

5.3 Comparison with the Nieuwstadt (1984) (N84) Model

In this Section we compare the scaling behaviour of our model with the N84 model, which is
a full second-order model. N84 applies a slightly different formulation for the stable length
scale; instead of E1/2 as in our model the standard deviation of the vertical velocity fluctua-
tion, σw is used:

lB = CB
σw

N
, (31)

(N84, his Eq. 20), where CB = 1.69 is a constant. According to his Figs. 2 and 3, σw and
E1/2 (both scaled by u∗) are almost constant as a function of ζ . This means that σw is a fixed
fraction of E1/2, which implies that the length scales in the two models are equivalent. In fact,
for stable conditions our TKE scheme can be considered a reduced version of the N84 model.
By reproducing some figures from N84 we will now compare the scaling behaviour of the
two models to assess how this behaviour is affected by the simplifications in the TKE-closure
approach. The theory of local scaling predicts that dimensionless quantities reach a constant
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Fig. 5 Rig vs. z/� for the different model simulations A–D defined in Table 1. The stable limit solutions for
each case are given in Table 2. The arrow indicates the limit solution of the N84 model

value in the stable limit (N84). In the following figures and in Table 2 the limit of the N84 is
given together with the model results for the four runs described above.

Figure 5 (N84, Fig. 9) gives the results for Rig versus z/�, and shows that case D does
not have a critical Rig , thus violating the theory of local scaling. The other three model runs
approach their critical value as predicted by Eq. 30. In the stable limit, Case A is very close
to the N84 solution.

The same pattern can be seen in Fig. 6, where the TKE, nondimensionalized by u∗, is
plotted versus stability. Values are constant over the whole stable range, implying that the
shear stress is proportional to the TKE everywhere in the stable boundary layer, which is
not surprising since in stable conditions shear is the only source of turbulence (N84). The
larger cp , the lower the equilibrium value that is obtained, though Case D does not reach
equilibrium. Stable limit solutions can be calculated according to

√
2E

u∗
=

√
2Ri0.25

g
√

ch
(

1 + cp Rig
)
, (32)

which follows directly from u2∗ = Km S = ch
(

1 + cp Rig
)

E N−1S. For Rig Eq. 30 can be
used. The scaled eddy diffusivities are given in Fig. 7. Except for Case D, all curves show a
gradual increase from zero in neutral conditions to a constant value in the stable limit. The
N84 stable limit compares well to our cases A and B, and the stable limit solutions can be
obtained from

Km

Lu∗
= k Rig

Pr
= k

ζ

φm
(33)

and,
Kh

Lu∗
= k Rig

Pr2 = k
ζ

φh
(34)

and using Eqs. 26 and 27.
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Thus the TKE-l model generates a scaling behaviour comparable to the more advanced
N84 model. The stable limits of the N84 model show most agreement with our Case A, which
has a relatively low value of ch and has cp = 0.

5.4 Boundary-Layer Structure

So far we have only discussed the scaling behaviour of the model. To demonstrate how
the different model simulations represent the boundary-layer structure, we now discuss the
boundary-layer height (Fig. 8) and the vertical profiles of the wind speed (Fig. 9). The
boundary-layer height, h, is defined as the level at which the TKE has fallen to 5% of its
surface value, divided by 0.95 (as in Cuxart et al. 2006). Model runs A and B produce
very shallow boundary layers of less than 100 m during nighttime, combined with a distinct
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Fig. 8 Time series of
boundary-layer heights, h, for the
model runs A–D. Crosses
indicate sodar retrievals made
during the CASES-99 campaign
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Fig. 9 Vertical wind profiles at 38 h of simulation (halfway the second night). Letters indicate the model runs
A–D

low-level jet. This is in good agreement with sodar retrievals obtained during the CASES-99
campaign. The difference between cases B and C demonstrates the impact of increasing ch

from 0.13 to 0.2: h becomes too large compared to observations and the low-level jet becomes
much weaker. In case D, h is far too large and the low-level jet has disappeared. These results
are consistent with our earlier finding that case D shows Louis-type stability functions. The
corresponding deterioration of the boundary-layer structure is a logical consequence.

6 Discussion

Our TKE scheme follows the local scaling hypotheses: for z/� → ∞ dimensionless quan-
tities reach a constant value and the φ functions become linear (z-less scaling). The latter is
a direct consequence of Rif and Rig becoming constant. However, as mentioned in Sect. 2,
data from experiments show that the φ functions level-off for large stabilities. In this Section
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we discuss this discrepancy. We further noticed that the ‘imaginary’ case D shows erratic
scaling behaviour. Here we discuss how to interpret these results.

To confirm that our results do not depend on boundary conditions we performed sensitiv-
ity runs with half the geostrophic forcing and an unrealistic step-wise surface temperature
forcing [one at night (4◦C), one during daytime (14◦C)]. For the different cases we obtained
similar results as before (not shown). Apparently, changing the boundary conditions does not
influence the scaling behaviour of the scheme, which indicates that this is robust and depends
only on model parameters.

6.1 The Validity of the Local Scaling Hypotheses

For continuous turbulence the critical Rif is about 0.2 (Beljaars and Holtslag 1991; N84),
which is consistent with the relation φm = 1+5ζ . However, when stability becomes so large
that turbulence becomes intermittent, Rif can be larger (Kondo et al. 1978). Assuming that
φm = 1 + 5ζ is valid for about ζ < 1, this implies a levelling off of φm for larger stabili-
ties. In these conditions the local scaling hypothesis is not valid anymore. Basu et al. (2006)
confirm this by showing that mesoscale motions and intermittent turbulence can invalidate
local scaling. Mahrt et al. (1998) state that local scaling does not work for ζ > 1, which
they define as the very stable regime. In fact, this may even explain the difference between
the flux–gradient relations found by BH91 and D91 (Fig. 1). The D91 functions were based
on N84 who selected only data with a wind speed of more than 5 m s−1 to avoid intermittent
turbulence as much as possible. Consequently, the D91 functions level off much slower than
the BH91 functions that do not make this selection. Since our TKE scheme strictly follows
local scaling theory it is not surprising that the model does not reproduce the levelling off of
the flux–gradient relations for large ζ . From a practical point of view it may be questioned
whether this levelling off effect is important, because for such strongly stable conditions
turbulent fluxes are very small anyway and radiative processes may dominate the energy
balance (André and Mahrt 1982). In addition, the results for the GABLS case are good when
using parameter setting A or B, whereas they deteriorate using the enhanced mixing in cases
C and D. This indicates that a realistic behaviour of the φ functions for ζ < 1 is crucial.

6.2 Understanding the Output of Case D

In Sect. 4 we concluded that for certain combinations of ch and cp no stationary solution
is possible. By running the model with such a ‘forbidden’ combination we found that the
scaling behaviour of the model becomes unrealistic as in case D. Even under these conditions
model results shows that the transport of TKE plays a minor role. In this case the equations
prohibit the model to reach a steady state. Instead, E grows every timestep and so do lm , Rig
and Km . This process continues until lm becomes limited by its neutral part (see Eq. 14).
Alternatively, cm can be maximized artificially by e.g. cm = ch[max (1 + 2Rig , 4)]. In this
case the stable limits can be easily calculated by using ch and cm = 4ch in Eqs. 21 and 22.
Of course other dependencies of cm on ch can be tested, as done by Tijm (2004) for example.

As shown in Sect. 5, results for case D seem to represent rLTG type of diffusion. There-
fore, it might be temping to apply comparable parameter settings if implementation of TKE
closure with strong diffusion is desirable. However, we do not recommend this. In our opinion
introducing more advanced physics (i.c. TKE closure) and deliberately maintaining the mix-
ing under stably stratified conditions unrealistically high (in order to improve other aspects of
the model, e.g. the large-scale atmospheric dynamics) should be avoided. Instead, implemen-
tation of TKE closure in operational models should lead to a more realistic SBL structure,
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suggesting a value for ch of about 0.13 and a rather small value of cp . Matching the observed
mixing characteristics in the SBL with the highly diffusive boundary layers apparently needed
in a NWP model needs clearly more research.

7 Conclusions

TKE turbulence closure is increasingly applied in research numerical atmosphere models,
but most large-scale operational models still apply first-order closure. One of the reasons
is that uncertainties exist in the scaling behaviour of TKE models and that it is questioned
whether this behaviour can be controlled.

We studied the scaling behaviour of a TKE model for stably stratified conditions. The
length scale for stable conditions is proportional to the ratio of the square root of the TKE
and the local Brunt–Väisälä frequency, which is a commonly used formulation (Deardorff
1980). The scaling behaviour of the model for stably stratified conditions is controlled by the
constants of proportionality preceding this ratio. Motivated by observations and 3D model
performance, the turbulent Prandtl number can be expressed as a function of stability. As a
prototype we used Pr = 1 + cp Rig . From the model equations we analyzed expressions for
the stable limit of various scaling quantities such as the flux–gradient relations.

Obviously, the generality of our results can be questioned, since we investigated only a
single model. However, we note that the Deardorff length scale is a rather common formu-
lation in TKE closures, and that some other proposals [e.g. the parcel method developed by
Bougeault and Lacarrère (1989)] reduce to the Deardorff length scale in stable conditions
as well. We believe that our results have a general applicability for such models. We also
acknowledge that they are not generally valid for all other length scale proposals found in
the literature, but our results may act to stimulate similar analyses for those schemes. The
current function which allows Pr to vary with stability is less frequently applied. Yet, our
results show that the inclusion of such an empirical correction function may have large and
undesired consequences for the model behaviour (in our case an inability to obtain a steady
state with the Deardorff length scale, and drift to a state that is dominated by the limiting
neutral length scale).

Depending on parameter choice, different regimes can be distinguished in the scaling
behaviour of our model. In the first regime the model follows the local scaling theory of
Nieuwstadt (1984), which can be considered as an extension of the surface based Monin–
Obukhov Similarity Theory: in the stable limit dimensionless parameters become constant
and the flux–gradient relations become linear (z-less scaling). However, most observational
studies show the flux–gradient relations leveling off for very strong stratification. This is
probably due to the fact that under these conditions turbulence loses its continuous character,
thereby violating basic assumptions underlying the theory of local scaling.

In the second regime the scaling behaviour of the model becomes unrealistic and violates
local scaling theory. This occurs when, depending on the mixing efficiency for heat, cp is
taken larger than a certain threshold value. In this regime, no stationary solution of the TKE
equation is possible: the shear production becomes so large that the buoyancy destruction and
the dissipation can no longer balance the TKE equation anymore. Surprisingly, the stability
functions now resemble the formulations that are currently used by large-scale operational
models as e.g. the Louis functions of the ECMWF model. We do not recommend implement-
ing this type of enhanced mixing in a TKE closure model. In our opinion the introduction
of a TKE scheme should aim for realistic mixing characteristics leading to a more accurate
representation of the SBL structure.
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The analytical results were illustrated by four model simulations with different mixing
characteristics. Sensitivity runs were done to investigate whether the obtained scaling behav-
iour was not just an artefact of the selected case study or the model details. It turned out
that changing the boundary conditions and the vertical resolution did not affect the scaling
results. The correspondence between our results and those of the full second-order model of
Nieuwstadt (1984) model is good. This shows that simplifications made in the TKE-closure
approach have little impact for the stable boundary-layer scaling behaviour.
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