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Preface

Water is a very important component of the Earth’s atmosphere as its phase
changes can produce liquid water and ice clouds. To account for latent heat
effects in clouds variables that are conserved for adiabatic processes that involve
phase changes are often used in meteorology. In Part I we will summarize a few
frequently used conserved variables for heat. In addition, water in its three phases
(vapor, liquid and ice) affects the density of air. As much of the thermodynamics
applied to the atmosphere involves the first and second laws of thermodynamics,
the ideal gas law, or Dalton’s law of partial pressures, a short summary of basic
thermodynamics will be presented.

A few simple exercises are included. Basically, most of them are intended to
give the student some feeling for the physical meaning of mathematically derived
equations, or to obtain some appreciation for ’typical’ numbers in this field of
research.

Part I presents the basic thermodynamics necessary for further study of cloud
systems. It merely gives a summary and can therefore not be considered as a
substitute for a text book. A book that is entirely dedicated to atmospheric
thermodynamics is the one by Bohren and Albrecht (1998). According to these
authors, ’the prevailing view of textbooks is that they should be as boring as possi-
ble ... They seem to be written with the aim of making science as uninteresting as
possible so that their authors can then wring their hands over the lack of interest
shown by young people in science.’ As this text sample from their preview read-
ily suggests, the book is written in a rather provocative way, and gives, besides
equations, a bunch of interesting anecdotal facts. The former author is also the
writer of ’Clouds in a glass of beer’, which title may sound as a recommendation
to students, and is frequently quoted in Karel Knip’s ’Alledaagse Wetenschap’
contribution to the dutch newspaper NRC Handelsblad. Another book that gives
a thorough overview of the topic is provided by Iribarne and Godson (1981). Some
of the material discussed in these short notes can also be found in several popu-
lar meteorology text books, like Holton (1992) and Gill (1982). Some parts were
inspired by the thermodynamics course presented by Bjorn Stevens at UCLA.





Chapter 1

Basic thermodynamics: A
summary

The ideal gas law and the first and second law of thermodynamics will be discussed
briefly. The Clausius-Clapeyron equation is derived to obtain the dependency of
the water vapor saturation pressure on the temperature.

1.1 Equation of state: The ideal gas law

The equation of state for an ideal gas law relates its pressure p, volume V and
temperature T by

pV = NkT = νR∗T, (1.1)

where N is the number of identical molecules, ν is the number of moles of gas,
k = 1.3806×10−23 J K −1 is Boltzmann’s constant, R∗ ≡ Nak = 8.341 J mol−1 K−1

is the universal gas constant, with Na = 6.022 × 1023 mol −1 Avogadro’s number.
The Earth’s atmosphere is a mixture of gases, mostly nitrogen, oxygen and argon,
trace gases like carbon dioxide, ozone and methane, and variable amounts of water
in its three physical phases. The concentrations of the mixture of gases that we
define as dry air (see Table 1.1) are very closely constant up to a height of about
100 km. The dry atmosphere can be taken to a very good approximation as an
ideal gas.

In general, it is useful to formulate the thermodynamic relations in terms of
intensive variables. An intensive variable is one whose value does not depend on
the amount of matter in the system, like the temperature of pressure. In contrast,
an extensive variable, depends on the size of the system. For instance, the internal
energy of a gas is an extensive variable since if we double its size, all else being kept
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Gas Molecular weight Molar fraction Mass fraction Specific gas constant (mi/mtot)Ri

Mi [g mol−1] mi/mtot Ri [J kg−1 K−1] [J kg−1 K−1]

NO2 28.013 0.7809 0.7552 296.80 224.15
O2 31.999 0.2095 0.2315 259.83 60.15
Ar 39.948 0.0093 0.0128 208.13 2.66
CO2 44.010 0.0003 0.0005 188.92 0.09
total 1.0000 1.0000 287.05

Table 1.1: Main components of dry atmospheric air (source Smithsonian Meteo-
rological Tables).

equal, its internal energy will double. Given a system whose volume V contains
an amount of mass M ,

v =
V

M
(1.2)

denotes the specific volume of the system. In principle, every extensive variable
can be converted to its corresponding intensive form by normalizing it by the
amount of matter it describes. In the remainder of this text we will use lower case
letters to denote specific intensive quantities, as opposed to their non-intensive
counterpart for which we will use capital letters, e.g. the specific volume v and
the volume V .

We would like to write the gas law in terms of kilograms rather than moles. To
this end, we need use the molecular weight of a species i, Mi (g/mol), and gives
the mass of 1 mole of identical molecules in grams. If the total mass of the gas is
mi, we can express the gas law as,

pV =
mi

Mi
R∗T. (1.3)

The molecular weight can be substituted out by using the specific gas constant Ri

for a species i, which is defined as

Ri ≡ R∗/Mi. (1.4)

For a mixture of gases the partial pressure pi of the ith gas is defined as the
pressure pi that it would have if the same mass (mi) existed alone at the same
temperature T and occupying the same volume V . By (1.3) and (1.4) the partial
pressure for an ideal gas can thus be expressed as

pi =
T

V
miRi. (1.5)

According to Dalton’s law of partial pressures, the total pressure p of a mixture
of (ideal) gases is the sum of the pressures

∑

pi of each species i as if it alone
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occupied a volume V ,

p =
T

V

∑

i

miRi = ρRmT, (1.6)

in which mtot =
∑

imi the total mass, Rm = 1/mtot
∑

imiRi the specific gas
constant for the mixture, and ρ = mtot/V is the density. Eq. (1.6) is the form of
the gas law generally used in meteorology. Table 1.1 shows the value of the gas
constant for dry air, Rd = 287.05 J kg−1 K−1. The specific gas constant for water
vapor Rv = 461.5 J kg−1 K−1.

1.2 The first law of thermodynamics

The first law of thermodynamics is equivalent to conservation of energy. It states
that the internal energy of a closed system (U) can change only if heat (Q) is
added or if work (W ) is done on the system by its surroundings,

dU = dQ+ dW. (1.7)

The rate of work is given by
dW = −pdV, (1.8)

such that (1.7) can be expressed as

dU = dQ− pdV. (1.9)

Usually the ideal gas law is utilized to recast (1.9) in terms of measurable physical
parameters.

1.2.1 Rules for differentiating

If the equation of state is governed by three variables (p, v, T ) then we can write

p = f1(v, T ) , v = f2(p, T ) or T = f3(p, v). (1.10)

In other words, there are only two independent state variables,

dp =
∂f1

∂v
dv +

∂f1

∂T
dT , dv =

∂f2

∂p
dp+

∂f1

∂T
dT , dT =

∂f3

∂p
dp+

∂f1

∂v
dv. (1.11)

If we differentiate state variables other than p, v, or T , for instance, the specific
internal energy u, we must specify which set of thermodynamics parameters we
use. Otherwise (∂u/∂p) is ambiguous and depends on the choice of thermodynamic
coordinates, for example whether u is defined as a function of p and v or as a
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function of p and T . To express the rate of change of u as a result of an isobaric
process, i.e. a change in the pressure p, we write

∂u(p, T )

∂p
≡

(

∂u

∂p

)

T

(1.12)

meaning that p and T are chosen as thermodynamical coordinates and that the
the temperature is held constant for this process.

1.2.2 Enthalpy and specific heat

A measure of the quantity of heat needed to raise the temperature of one gram of
a substance by 1 ◦C is called the heat capacity C, and is defined as:

C = dQ/dT. (1.13)

But this definition is incomplete. There are many ways to add heat to a system.
One could add heat to a system at constant volume or at constant pressure. Or
one could add heat to a system even at constant temperature. One could add heat
as both the volume and pressure change. The specific heat capacity at constant
pressure, cp and the specific heat capacity at constant volume, cv are different.

If one choses the specific volume v and the temperature T as thermodynamic
coordinates, then the specific internal energy u can be expressed as,

du =

(

∂u

∂v

)

T

dv +

(

∂u

∂T

)

v

dT =

(

∂u

∂v

)

T

dv. (1.14)

where the last equality follows from the fact that the internal energy of an ideal
gas does not depend on its volume (see exercise 2),

(

∂u

∂v

)

T

= 0. (1.15)

It must be stressed that (1.15) implicitly assumes that the intermolecular forces
are negligibly small, and therefore is applicable only to an ideal gas.

The density in the gas law (1.6) can be replaced by the specific volume with
aid of (1.2), such that pv = RT . Substituting this form into (1.9) and using (1.14)
gives

dq =

(

∂u

∂T

)

v

dT + pdv, (1.16)

where dq indicates the differential amount of heat added. For an isometric process
dv = 0, and if we define dq = cvdT |v, then the isometric specific heat cv follows
from (1.16),

cv ≡

(

∂u

∂T

)

v

. (1.17)
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Another state variable that is often used in atmospheric thermodynamics is
the enthalpy h

h = u+ pv. (1.18)

Given this definition, the first law can be expressed as

dq = du+ pdv = dh− d(pv) + pdv = dh− vdp. (1.19)

For an isobaric process dp = 0, and consequently dq = dh. The isobaric specific
heat cp is defined as

cp ≡

(

∂h

∂T

)

p

, (1.20)

For a constant pressure process a specific volume change dv and a change in the
temperature dT are related as

pdv = RdT |p. (1.21)

Eqs. (1.17) and (1.21) can be substituted into (1.16) to give

dq = (cv +R)dT |p = dh, (1.22)

where the last equality follows from (1.19). By the definition for cp according to
(1.20) it follows that

cp = cv +R. (1.23)

The enthalpy gives a measure of total potential energy of the atmosphere. As
an explanation, let us consider the total internal energy (per unit cross-sectional
area) of the entire atmosphere,

U =

∫

∞

0

ρcvTdz. (1.24)

Likewise, the total gravitational energy reads

P =

∫

∞

0

ρgzdz. (1.25)

If we assume that the atmosphere is in a hydrostatic equilibrium, dp/dz = −ρg,
we can rewrite (1.25) as

P = −

∫

∞

0

z
dp

dz
dz. (1.26)

Integration by parts yields

P =

∫

∞

0

pdz. (1.27)
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Substitution of the ideal gas law gives

P =

∫

∞

0

ρRTdz, (1.28)

such that the sum of the internal energy and the potential energy becomes

U + P =

∫

∞

0

ρ(cv +R)Tdz =

∫

∞

0

ρhdz = Htot. (1.29)

The total enthalpy of the an atmospheric column is therefore given by the sum of
its total internal energy and gravitational potential energy. This can be interpreted
as follows. If the atmosphere is heated, its enthalpy increases for two reasons: Its
internal energy increases, and its potential energy increases because the center of
mass rises. Many processes in the atmosphere are nearly isobaric, which is why
the enthalpy is more relevant to our applications than the internal energy.

Exercise 1. Lorenz (1955) defined the available potential energy of the at-
mosphere as the difference between the actual enthalpy and the minimum total
enthalpy that could be achieved by rearranging the mass under reversible adia-
batic processes. This definition can be understood by considering the conservation
equation for the total energy of the atmosphere (including internal, potential, and
kinetic energies). According to this equation, the sum of the kinetic energy per
unit mass and the enthalpy of unit mass changes in time due to redistribution of
mass within the atmosphere, and also due to to energy sources and sinks such as
radiation, latent heating, and surface exchanges. In the absence of energy sources
and sinks, the tendency of the total kinetic energy (K) and the total enthalpy (H)
is given by,

∂

∂t
(K +H) = 0. (1.30)

Consider a simple system containing two parcels of equal mass. In the given
state, parcels with potential temperature θ1 and θ2 reside at pressures p1 and p2,
respectively. We assume that θ1 < θ2 and p1 < p2.

a) Use the definition for the potential temperature to compute the enthalpy
cpT of the two parcels.

The lower parcel 1 moves upwards and becomes adiabatically (dq = 0) inter-
changed with parcel number 2, so that parcel number 2 goes to pressure p1 and
vice versa.

b) Compute the enthalpy of the two parcels after the swapping process. What
is the difference with their initial total enthalpy? Can you explain if this pro-
cess can occur spontaneously, regarding the fact that kinetic energy is needed to
interchange the parcels?
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Background: This exercise has been taken from a paper by Wang and Randall
(1996). These authors utilize the ’parcel swapping’ approach to minimize the
enthalpy of a given atmospheric column to compute the total potential energy
available for cumulus convection.

1.3 The second law of thermodynamics: Entropy

A reversible process is defined as

∮

δQ

T
= 0. (1.31)

This integral is independent of the path. The entropy S is defined as dS = dQ/T ,
or alternatively, the specific entropy s, ds = dq/T . Unlike heat and work, the
entropy is a state variable, thus we can speak of the entropy in state A or B. The
second law of thermodynamics states that

Tds = du+ pdv ≥ 0. (1.32)

Note that by the temperature in the denominator of (1.31) heat and entropy are
not linearly related.

What is the relevance of entropy to meteorologists? To answer this question,
we define the potential temperature in terms of a measure of the entropy

ds = cpd ln θ. (1.33)

Next, we use the definition of the internal energy (1.17) and the gas law to give

Tds = cpdT −
RdT

p
dp ⇐⇒ ds = cp(d ln T − d ln p

Rd
cp ). (1.34)

Integration yields

s− s0 = cp(ln θ − ln θ0) = cp ln





T

T0

(

p0

p

)

Rd
cp



 . (1.35)

For an isentropic process (ds = 0) we immediately see that this is also a constant-
potential temperature process. Furthermore, if we set T0 = θ0,

θ = T

(

p0

p

)

Rd
cp

. (1.36)
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The potential temperature θ can be interpreted as the temperature a parcel would
have if it were displaced isentropically to a reference height where the pressure is p0,
which is usually taken p0 = 1000 hPa. In other words, a parcel with temperature
T at pressure level p will have a potential temperature θ, which value is equal to
the temperature T0 at the pressure level p0.

The lapse rate of the potential temperature can be obtained by differentiating
(1.36) with respect to height

dθ

dz
=
θ

T

(

dT

dz
−
RdT

pcp

dp

dz

)

(1.37)

Assuming that the atmosphere is in a hydrostatic balance, dp/dz = −ρg, then
with aid of the gas law (1.37) can be written as

dθ

dz
=
θ

T

(

dT

dz
+
g

cp

)

. (1.38)

Since g/cp = Γd is the dry adiabatic lapse rate, we conclude that if the temperature
profile follows the dry adiabatic lapse rate, the potential temperature is constant
with height.

Figure 1.1 shows observations made in a clear convective boundary layer (CBL).
Because of solar radiative heating turbulent eddies are driven from ground sur-
face. The thermals can penetrate into the thermal inversion, which for this case is
located at about 380 m, above which they are damped by the stable stratification.
Turbulence tends to make the interior of the CBL vertically well-mixed, in the
sense that quantities like the potential temperature and the specific humidity be-
come approximately constant with height. For a well-mixed CBL, the temperature
follows approximately the dry-adiabatic lapse rate. The potential temperature is
vertically well-mixed. Note that in the boundary layer the specific humidity hardly
varies with height, whereas the relative humidity tends to increase with height.

Exercise 2. In the derivation of the specific heats we used Eq. (1.15),
(∂u/∂v)T = 0. Show that this relation applies to an ideal gas. Strategy: write
expressions for du and ds as a function of the thermodynamic coordinates p and
v, and insert the expression for du into the second law.

1.4 The Clausius-Clapeyron equation

Sometimes it is argued that when air cools clouds form because cold air cannot hold
as much water vapor as warm air. Since, for instance, cumulus clouds develop in
surface-driven thermals that have gradually cooled during their ascent, it appears
that there is a causal relation between cooling and saturation so that this argument
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Figure 1.1: Vertical profiles of (a) the temperature T , (b) the potential temper-
ature θ, (c) the relative humidity, and (d) the specific humidity qv, for a clear
convective boundary layer as observed by a tethered balloon at Cabauw, Nether-
lands, around 10:00 h (local time), 23 August 2001. The thin line indicates the
dry-adiabatic temperature lapse rate.
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is making sense. However, the underlying notion that air is some kind of imaginary
sponge that can absorb an amount of water vapor depending on its temperature
is a misconception.

Water molecules are constantly coursing back and forth between phases (an-
other word for the three states: vapor, liquid, and solid). If more molecules are
leaving a liquid surface than arriving, there is a net evaporation; if more arrive
than leave, a net condensation. It is these relative flows of molecules which de-
termine whether a cloud forms or evaporates. The rate at which vapor molecules
arrive at a surface of liquid (cloud drop) or solid (ice crystal) depends upon the
vapor pressure. The rate at which vapor molecules leave the surface depends upon
the characteristics of the surface. What appears to be cloud-free air (virtually)
always contains sub microscopic drops, but as evaporation exceeds condensation,
the drops do not survive long after an initial chance clumping of molecules. As
air is cooled, the evaporation rate decreases more rapidly than does the con-
densation rate with the result that there comes a temperature (the dew point
temperature) where the evaporation is less than the condensation and a droplet
can grow into a cloud drop. Evaporation increases with temperature, not be-
cause the holding capacity of the air changes, but because the more energetic
molecules can evaporate more readily (with, of course, the caveat that evapora-
tion is also influenced by things other than temperature, as described above). (see
http://www.ems.psu.edu/ fraser/BadMeteorology.html from which the explana-
tion above is taken, and more nice examples of ’bad’ meteorology).

The water vapor pressure is usually denoted by the symbol e, and from the
gas law it follows that

e = ρvRvT, (1.39)

where ρv is the density of water vapor. In case the concentration of water vapor is
at its saturation value we can define the corresponding saturation vapor pressure
by es. A familiar quantity to many is the relative humidity RH of air, which is
defined as

RH =
e

es
. (1.40)

Clearly, the relative humidity gives a measure of the ratio of two (partial) pressures.

To assess the role of the temperature on es, we first need to use the entropy
equation, after which we will derive the Clausius-Clapeyron equation. Let us
choose v and T as thermodynamic coordinates, such that the specific internal
energy can be expressed as

du =

(

∂u

∂T

)

v

dT +

(

∂u

∂v

)

T

dv, (1.41)
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and likewise for the specific entropy,

ds =

(

∂s

∂T

)

v

dT +

(

∂s

∂v

)

T

dv. (1.42)

Substituting (1.41) into the entropy equation (1.32) yields

ds =
1

T

(

∂u

∂T

)

v

dT +
1

T

[(

∂u

∂v

)

T

+ p

]

dv. (1.43)

From comparison of (1.42) to (1.43) it follows that
(

∂s

∂T

)

v

=
1

T

(

∂u

∂T

)

v

, (1.44)

(

∂s

∂v

)

T

=
1

T

[(

∂u

∂v

)

T

+ p

]

. (1.45)

After differentiating (1.44) with respect to v and (1.45) with respect to T and
using the chain rule, we obtain

∂2s

∂v∂T
=

1

T

∂2u

∂v∂T
, (1.46)

∂2s

∂T∂v
=

1

T

[

∂2u

∂T∂v
+

(

∂p

∂T

)

v

]

−
1

T 2

[(

∂u

∂v

)

T

+ p

]

. (1.47)

Because the cross partial derivatives are equal we get
(

∂u

∂v

)

T

= T

(

∂p

∂T

)

v

− p. (1.48)

This equation will be our starting point to compute the functional dependence
of the saturation vapor pressure es as a function of temperature. It is essential
to note that as we consider liquid water in equilibrium with its vapor we cannot
neglect the left-hand-side of (1.48), since this mixture does not behave as an ideal
gas.

Let us consider a total amount of watermv+ml = m, with the indices ’v’ and ’l’
indicating values for water vapor and liquid water, respectively. The total internal
energy is then given by the sum of the internal energies of the two components

U = mvuv +mlul, (1.49)

and similarly for the volume

V = mvvv +mlvl. (1.50)
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We assume that the mixture is kept in an apparatus such as a cylinder fitted with
a piston, which as a whole is immersed in a constant-temperature reservoir. If we
decrease the volume of the cilinder, the vapor pressure increases until it becomes
equal to the saturation vapor pressure es. A further decrease in the volume does
not lead to a subsequent change in the water vapor pressure. Instead, water vapor
is condensed to liquid water. The constant pressure during this process is the
saturation vapor pressure.

Suppose we change the volume of the cylinder such that a mass δm evaporates,
then the total internal energy and the total volume change by amounts

δU = δm(uv − ul), δV = δm(vv − vl). (1.51)

According to the first law the heat exchanged with the reservoir is

δQ

δm
= (uv − ul) + p(vv − vl) ≡ lv, (1.52)

where lv represents the enthalpy of vaporization per unit mass. However, in mete-
orology lv is usually called the latent heat of vaporization. This latter name stems
from the time that one believed that there were two kinds of heat, namely one
which one can feel, the sensible heat, and another kind which one cannot feel,
the latent heat. Likewise, meteorologists call the turbulent heat flux a sensible
heat flux, and the turbulent moisture flux the latent heat flux. Eq. (1.52) can be
rewritten as

(

du

dv

)

T

=

[

lv
(vv − vl)

− p

]

, (1.53)

This expression is in a similar form as our starting equation (1.48), and because
for this case the pressure p is the saturation vapor pressure es we can express its
temperature dependency as

des
dT

=
1

T

lv
(vv − vl)

. (1.54)

This equation is called the Clausius-Clapeyron equation. Note that the partial
derivative is replaced by a total derivative because the saturation pressure depends
only on temperature.

If we assume that the specific volume of the liquid water is much smaller
than that for the water vapor, vl � vv, and because water vapor is to a good
approximation an ideal gas, esvv = RvT , we can rewrite (1.54) as

1

es

des
dT

≈
lv

RvT 2
. (1.55)
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For typical temperature in the atmospheric boundary layer one may use the fol-
lowing approximate form for es Stull (1988)

es = 610.78 exp

[

17.2694(T − 273.16)

T − 35.86

]

[Pa] , (1.56)

for absolute temperature temperature T [K].

1.4.1 The dependency of the latent heat of vaporization on the
temperature

The latent heat release of vaporization (1.52) can be expressed in terms of enthalpy
(1.18),

lv = (uv − ul) + p(vv − vl) = hv − hl. (1.57)

Differentiating with respect to temperature shows that the latent heat release of
vaporization depends on the temperature as follows,

∂lv
∂T

=
∂hv
∂T

−
∂hl
∂T

= cpv − cpw, (1.58)

with cpv and cpw according to (1.20) the specific heats for water vapor and liquid
water, respectively. For the temperature between 273 and 323 K, the variation of
lv is typically less than 1%.

1.5 Summary

A short summary of basic thermodynamics is presented.
Key elements are:
• If we express the gas law in terms of mass instead of moles, we switch from

using the universal gas constants to a specific gas constant which value depends
on the molecular weight.

• The dry atmosphere and water vapor can be taken to a good approximation
as an ideal gas.

• The state of the atmosphere can be expressed by three state variables, p, v
and T , of which two are independent.

• The first law of thermodynamics dictates that energy is conserved.
• For a dry atmosphere a constant-entropy process is also a constant potential

temperature process.
• We have derived the Clausius-Clapeyron equation in order to express the

saturation vapor pressure as a function of temperature. In the derivation it is
crucial that the mixture of liquid water in equilibrium with its vapor is not taken
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to behave as an ideal gas. As a consequence, the total internal energy of the
mixture depends on the volume.
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Chapter 2

Atmospheric thermodynamics

The presence of variable amounts of water in the atmosphere has two important
effects. First, it modifies the density of air, and is therefore important to the
equation of motion in which the density is major forcing term for the vertical mo-
mentum. Second, latent heat release effects play an important role when clouds
form of dissipate, which therefore is relevant to the heat budget of atmosphere.
The different effects of moisture on heat and density are incorporated in so-called
’temperature’ variables, namely the equivalent potential temperature and the vir-
tual (potential) temperature, respectively.

The effect of water vapor and liquid water loading on the density will be
discussed. With aid of the thermodynamic laws conserved variables can be derived,
i.e. variables that are conserved under adiabatic processes regardless of the state
of saturation of the air parcel. For instance, for a dry atmosphere the potential
temperature is a conserved variable, but in a cloudy atmosphere it is not conserved
anymore. Instead, for a cloudy atmosphere one may use the equivalent potential
temperature or the liquid water potential temperature.

2.1 Moisture variables

In many dutch houses a hygrometer, a thermometer and a barometer are placed
on the wall. Some hygrometers, like the hair hygograph, measure the relative
humidity by means of a treated human or horse hair. The hair shrinks by about
2.5 per cent of its length when the relative humidity of the atmosphere changes
from 100% to zero. In meteorology, one often uses dimensionless measures in
terms of the ratio of mass of water to either the mass of dry air, or its ratio to the
total mass of dry air and of water. The former is called the mixing ratio, r, and
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the latter the specific humidity q,

rk =
mk

md
, qk =

mk

m
where k ∈ v, l, i (2.1)

where the indices ’v’, ’l’, ’i’ indicate water vapor, liquid water, water in the ice
phase, respectively. Here m = mt +md the total of mass of air including that of
total water mt, mt = mv+ml+mi, and md the mass of dry air. The total specific
humidity qt is defined by

qt = qv + ql + qi, (2.2)

and analogously for the mixing ratio. Sometimes for qv and rv the index ’v’ is
omitted. The index ’s’ is often used to denote the water vapor saturation specific
humidity qs.

The specific humidity and the mixing ratio are simply related as:

qv =
rv

1 + rv
, rv =

qv
1 − qv

. (2.3)

Whether one uses either the mixing ratio or the specific humidity appears to be a
matter of personal preference. Because in the atmosphere both qv � 1 and rv � 1
we have qv ≈ rv.

Exercise 3. Apply the gas law to water vapor and dry air to express the
saturation mixing ratio rs as a function of the atmospheric pressure (p = 1018
hPa) and the water vapor saturation pressure es. Use (1.56) and (2.3) to display
in one figure rs and qs as a function of the temperature.

Exercise 4. Sometimes the spatial coverage of (liquid water) clouds is de-
picted by showing the cloud liquid water path (W ). It is defined as the vertical
integral of the specific liquid water content,

W =

∫ ztop

0

ρqldz. (2.4)

Typical numbers for low clouds such as stratocumulus are about 0.150 kg m−2. If
the cloud layer is 500 m thick, what is a typical representative value for the liquid
water content ql in the cloud? For the density take ρ = 1.1kgm−3, and use that
the liquid water content increases approximately linearly with height.

Background: The liquid water path is a very important quantity for radiative
transfer purposes, as the ratio of the liquid water path and the cloud droplet
effective radius re gives the cloud optical depth τ = 3W/(2ρlre). In stratocumulus
re ≈ 10µ, which for this example gives an optical depth τ = 22.5. Because this
value corresponds to a mean cloud albedo of about 0.7, the cloud layer has a
significant effect on the radiation budget.
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We finalize this section by defining two more quantities. First, the dew point
temperature Td, which is the temperature to which air with partial vapor pressure
e has to be cooled such that the vapor pressure becomes equal to the saturation
vapor pressure,

es(Td) = e. (2.5)

Second, we note that water vapor can be measured by a wet-bulb psychrometer,
which consists of two thermometers, one of which measures the air temperature,
the other one has its bulb covered by with a wet (water) muslin wick to give
the so-called wet-bulb temperature Tw. Air flows around the wet bulb and if not
saturated, water will evaporate until it becomes saturated. The thermodynamic
system to be considered is a certain mass of dry air (that has flowed around the
bulb) plus water which is evaporated into the air until it reaches saturation. The
heat needed for the evaporation is extracted from the air itself. The relation
between the two temperatures and the actual specific humidity is

T − Tw =
lv
cp

[qs(Tw) − qv(T )]. (2.6)

2.2 The virtual (potential) temperature

We will derive an expression that incorporates the effect of water vapor and liquid
water on the density. Because of the large density of liquid water (ρl), which is
about 1000 times larger than that of dry air, we may neglect its specific volume
(vl = Vl/ml = 1/rhol) but, however, not its mass.

The total mass of water in its vapor and liquid phase is mv + ml, and the
mass of dry air is md, which determines the total mass m = md +mv +ml that is
contained in a volume V = Vg +Vl, where Vg is the volume occupied by the gases.
Note that we do not consider water in the ice phase. As Vl � Vg, V ≈ Vg, and we
can express the density of the mixture ρ as

ρ =
m

V
=
md +mv +ml

V
. (2.7)

If we compare this density to the density of dry air, ρd, and according to the
definitions for the specific humidities (2.1) we find

ρd
ρ

=
md

md +mv +ml
= 1 − qv − ql. (2.8)

By the gas law we have for the partial pressure pd = ρdRdT and e = ρvRvT . If
we neglect the effect of liquid water on the pressure, the total pressure reads

p = pd + e = ρRmT = ρdRdT + ρvRvT. (2.9)
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By (2.8) the gas constant for the mixture Rm can thus be expressed as

Rm = (1 − qv − ql)Rd + qvRv. (2.10)

We aim to use the gas constant for dry air Rd rather than the specific gas constant
for the mixture Rm. To this end, we can express the gas law in the following from

p = ρRmT = ρ [(1 − qv − ql)Rd + qvRv]T = ρRdTv (2.11)

by which we have defined the virtual temperature Tv,

Tv =

[

1 − (1 −
1

ε
)qv − ql)

]

T, (2.12)

with ε = Rd/Rv ≈ 0.622.

Virtual temperature is the temperature that air of given pressure and density
would have if the air were completely free of water. In the absence of liquid
water, the virtual temperature is never less than temperature because the mean
molecular weight of moist air is never greater than that of dry air. The ql term
in (2.12) tends to diminish the virtual temperature and is sometimes called the
liquid water loading term. Analogously to (1.36), the virtual potential temperature
is defined as

θv = Tv

(

p0

p

)

Rd
cp

. (2.13)

2.3 The equivalent potential temperature

We have seen that the potential temperature for dry air parcels which are displaced
vertically is constant, provided that the process is isentropic. Consider an adia-
batically and reversibly rising, moist air parcel. During its ascent the saturation
vapor pressure will decrease as the temperature of the environment decreases with
height, which is a consequence of the Clausius-Clapeyron equation. At some point
the water vapor pressure of the parcel will be equal to its saturation value. If the
parcel continues to rise through an increasingly colder atmosphere, liquid water
will condense which results in a release of latent heat. This effect of additional
heating is included in the equivalent potential temperature θe, a conserved quantity
for isentropic processes that involves phase changes, and is therefore an appropri-
ate quantity when one has to deal with cloudy atmospheres. Its approximate form
reads

θe ≈ θ exp

(

lvqv
cpT

)

. (2.14)
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As the argument in the exponential function is sufficiently small, we can further
approximate

θe ≈ θ +
lv
cp
qv. (2.15)

Similarly, another quantity that is conserved for isentropic processes including
phase changes is the liquid water potential temperature,

θl ≈ θ −
lv
cp
ql. (2.16)

Because qt = qv + ql, we have θl = θe − (lv/cp)qt. Note that θe and θl are not
conserved anymore when precipitation removes liquid water, or when raindrops
evaporate in unsaturated air.

Example

The key ingredients for the derivation of the equivalent potential temperature
can be summarized as follows:

1. Consider the total entropy mixed parcel which contains dry air, water vapor
and liquid water.

2. Take into account phase changes. This means that latent heat effects must
be considered, and that the masses of liquid water and water vapor are variable
as an increase in liquid water leads to a similar decrease in water vapor.

3. Use the Clausius-Clapeyron equation.

4. The resulting conservation equation for the entropy of the mixture is long.
At this point one may start to make some approximations.

Following step 1, the total entropy of the parcel is

S = mdsd +mvsv +mlsl. (2.17)

For the change in the entropy we can write

dS = d(mdsd) + d(mvsv) + d(mlsl) = mddsd +mvdsv + dvdmv +mldsl + dldml,
(2.18)

where we take the mass of dry air md constant. Step 2 involves conservation of
total water mass,

dmv = −dml. (2.19)

The latent heat of vaporization can be introduced into (2.18) by differentiating
the first law (1.32) with respect to volume,

T
∂s

∂v
=
∂u

∂v
+ p. (2.20)
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For liquid water and water vapor in equilibrium at temperature T and pressure p
(2.20) yields,

T (sv − sl) = uv − ul + p(vv − vl) = hv − hl = lv. (2.21)

Substituting (2.19) and (2.21) into (2.18)gives

dS = mddsd +mvdsv +mldsl +
lv
T
dmv. (2.22)

The entropies for dry air and water vapor can be expressed as

dsd =
cpd
T
dT −

Rd
pd
dpd, (2.23)

dsv =
cpv
T
dT −

Rv
e
de =

cpv
T
dT −

Rv
e

de

dT
dT. (2.24)

For liquids and solids the rate of change for any process is given by

dsl =
cl
T
dT. (2.25)

If we use (2.23), (2.24), and (2.25), we can express the entropy change (2.22) as

dS =
lv
T
dmv + (mlcl +mvcpv +mdcpd)

1

T
dT −

mvRv
es

des
dT

dT −
mdRd
pd

dpd. (2.26)

In the last equality we introduced the Clausius-Clapeyron equation thereby ap-
plying step 3. If we denote the total mass of the system m = md + mv + ml,
use the relation that expresses the temperature dependency of the latent heat of
vaporization (1.58), and Clausius-Clapeyron (1.55), then (2.26) can be rewritten
as

dS = [(mv +ml)cl +mdcpd]
1

T
dT + d

(

lvmv

T

)

−
mdRd
pd

dpd. (2.27)

Lastly, this equation can be written in a compact form

ds = c′pd lnT + d

(

lvqv
T

)

−
R′

d

d
ln pd. (2.28)

with an effective specific heat c′p = (qtcl + (1− qt)cpd) and an effective specific gas
constant R′

d = (1 − qt)Rd. Note that equation (2.28) is exact.
If we define the potential temperature for dry air,

θd = T

(

p0

pd

)

R′

d
c′p

⇐⇒ c′pd ln θd = c′pd lnT −R′

dd ln pd, (2.29)
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with p0 a reference pressure (usually set to 1000 hPa). Note that this is not exactly
the same as the potential temperature defined by (1.36), because of the difference
p = pd + es, and the slightly different specific heat and specific gas constant. By
(2.29) we can rewrite (2.28) as

ds = d

(

c′p ln θd +
lvqv
T

)

= 0. (2.30)

Assume a parcel with temperature T , dry potential temperature θd, and a specific
humidity q. For isentropic motion, ds = 0, and (2.28) can be integrated to obtain
the temperature after a vertical displacement. At a sufficiently low pressure all
the water vapor will have condensed such that qvf = 0, where the subscript ’f’
denotes the final state. If we denote θe = θdf then

c′p

(

ln
θe
θd

)

=
lvqv
T

⇐⇒ θe = θd exp

(

lvqv
c′pT

)

. (2.31)

If we compare this with the expression (2.14) introduced at the introduction of
this session, we see that the latter involves a few implicit assumptions. First, the
potential temperature for dry air is replace by the potential temperature (1.36).
This means that we neglect the effect of water on the specific heat and the specific
gas constant, and that we neglect the effect of the vapor pressure on the total
pressure.

Figure 2.1 shows an example of the vertical thermodynamic structure of a
stratocumulus cloud deck. These kind of clouds often develop over the oceans in
high-pressure systems such as in the descending branch of the Hadley circulation.
The boundary layer is usually capped by a well-defined temperature inversion
that acts to trap moisture which is evaporated from the surface. As a result
horizontally extended cloud fields can develop (1000 × 1000 km2). They also do
frequently appear above the North Sea. In addition to a weak buoyancy flux from
the surface, latent heat release effects and a strong radiative cooling at the top
of the cloud layer support the formation of turbulence which tends to make the
vertical structure of conserved variables well-mixed. For all quantities shown in
the figure a discontinuity occurs across the inversion. The cloud base is located at
about 250 m. Above this height the liquid water content increases approximately
linearly with height to a maximum value of about 0.8 g/kg. In the boundary
layer the temperature decreases with heigth, and the potential temperature and
the virtual potential temperature both increase with height. The difference in
the two latter quantities is mainly due to the effect of the specific humidity term,
θv = θ(1 + 0.61qv − ql). In the cloud layer, the vertical profiles for conserved
quantities like the equivalent potential temperature, the liquid water potential
temperature and the total specific humidity deviate slightly from a constant value.
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Figure 2.1: Vertical profiles in a stratocumulus-topped boundary layer measured
during night-time by an aircraft during flight A209 of the Atlantic Stratocumulus
Transition Experiment (ASTEX), 13 June 1992. The figures show the liquid water
content ql, the temperature T , the potential temperature θ, the virtual potential
temperature θv, the equivalent potential temperature θe, the liquid water potential
temperature θl, and total specific humidity qt.
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2.4 Summary

• We have introduced various variables that are used to give the (relative) water
vapor content, like the mixing ratio, the specific humidity, the relative humidity.

• The equivalent potential temperature and the liquid water potential temper-
atures are conserved for isentropic processes involving phase changes.
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Chapter 3

Governing equations for
shallow convection in clear and
cloudy atmospheres

The state of the atmosphere changes not only by diabatic processes like radiation
and precipitation, but also by advection including turbulent motions. The basic
approach to derive a simplified set of equations describing turbulent flows involves
Reynolds-averaging. This technique splits variables into a mean and a fluctua-
tion part, the latter being associated with the turbulent motions. The turbulent
transport of heat, moisture, pollutants and chemical species is then represented by
so-called Reynolds-averaged fluxes. In this chapter we will present the governing
equations for shallow convection. A more elaborate description of the material
contained in this chapter can be found in the book ’An introduction to Boundary
layer Meteorology’, by Stull (1988).

3.1 Governing equations for the mean state and mo-

tions in the atmosphere

In addition to the gas law, we will use conservation equations for momentum,
heat, moisture and mass. The gas law in terms of the virtual temperature Tv and
the density of moist air ρ reads

p = ρRdTv. (3.1)

We will use the tensor notation so that ui is the velocity vector in a Cartesian
coordinate system xi with i ∈ {1, 2, 3} such that −→u = (u1, u2, u3) ≡ (u, v, w) and
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−→x = (x1, x2, x3) ≡ (x, y, z) where z aligned with the gravitational acceleration
vector. In addition, δij indicates the Kronecker’s delta function

δij

{

+1 for m = n

0 for m 6= n,
(3.2)

and εijk the alternating unit tensor (or the Levi-Civita symbol),

εijk











+1 for ijk = 123, 231 or 312

−1 for ijk = 321, 213 or 132

0 for any two or more indices alike.

(3.3)

The conservation for mass, or the continuity equation, is given by

∂ρ

∂t
+
∂ρuj
∂xj

= 0 ⇐⇒
∂uj
∂xj

= −
1

ρ

dρ

dt
, (3.4)

and the conservation of momentum reads

dui
dt

= −δi3g + fεij3uj −
1

ρ

∂p

∂xi
+

1

ρ

∂τij
∂xj

, (3.5)

g the acceleration due to the Earth’s gravity, and the material derivative

d

dt
≡

∂

∂t
+ uj

∂

∂xj
. (3.6)

The coriolis parameter f = 2ω sinφ, where φ is the latitude and ω = 7.27 × 10−5

s−1 is the angular velocity of the earth. For a Newtonian fluid, i.e. a fluid for which
the viscous stress is linearly dependent on the shear, the viscous stress tensor τij
is given by

τij = µ

(

∂ui
∂xj

+
∂uj
∂xi

)

+

(

µB −
2

3
µ

)

∂uk
∂xk

δij (3.7)

where µB is the bulk viscosity coefficient (near zero for most gases) and µ is the
dynamic viscosity coefficient. If we further assume that the viscosity µ is not a
function of position, and that air is incompressible we can express the last term
in (3.5) as

1

ρ

∂τij
∂xj

= ν
∂2ui
∂x2

j

, (3.8)

where the kinematic viscosity ν is defined as the ratio of dynamic viscosity (µ) to
the density, ν ≡ µ/ρ.
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The conservation equations for heat (θ) and moisture (qt) read, respectively,

dθ

dt
= νθ

∂2θ

∂x2

j

−
1

ρcp

(

∂Fj
∂xj

)

−
LpE

ρcp
, (3.9)

dqt
dt

= νq
∂2q

∂x2

j

+
Sqt
ρ
, (3.10)

with νθ the thermal diffusivity and νq the molecular diffusivity for water vapor in
the air, E represents the mass of water vapor per unit volume per unit time being
created by a phase change from liquid or solid, Lp is the latent heat associated
with the phase change of E. The values for latent heat at 0◦C are Lv = 2.50×106

J/kg (gas:liquid), Lf = 3.34 × 105 J/kg (liquid:solid) and Ls = 2.83 × 106 J/kg of
water (gas:solid). Sqt is a source/sink function and can represent, for instance, pre-
cipitation. Likewise, the conservation equation for an arbitrary chemical species c
reads,

dc

dt
= νc

∂2c

∂x2

j

+ Sc (3.11)

where Sc represents a loss/gain term due to a chemical reaction.

3.2 Reynolds-averaging rules

A means to separate large-scale (synoptic) fluctuations from turbulent motions is
provided by the Reynolds-averaging procedure. Consider a variable a that is split
into a mean part (A) and a turbulent part a′, a = A + a′. If we let c denote an
arbitrary constant, then the Reynolds-averaging rules read

cA = cA

(A) = A

(AB) = A B (3.12)

A+B = A+B
(

dA

dt

)

=
dA

dt
.

Averaging yields

a = (A+ a′) = (A) + a′, (3.13)

which can only be equal if

a′ = 0 =⇒ a = A. (3.14)
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Figure 3.1: Schematic spectrum of wind speed near the ground estimated from a
study of Van der Hoven (1957). Source: Stull (1988)

Things become less straightforward if we consider multiplications, e.g. a · b,

a · b = (A+ a′)(B + b′) = A B + a′b′. (3.15)

The Reynolds-averaging approach is valid only for variables that exhibit a clear
separation in length scales. In practice, this means that if one makes a Fourier
transformation of a quantity, its spectrum is assumed to have a distinct minimum
intensity at scales between ∼ 1 and ∼ 10 km, as illustrated from observations
displayed in Figure 3.1. Note that this local minimum is supposed to separate
turbulent from synoptic scale fluctuations and is refered to as the spectral gap.
Therefore, if we apply Reynolds decomposition and the averaging rules (3.12) we
tacitly assume the existence a spectral gap. Observations usually show that the
amplitude of the vertical velocity fluctuations at scales larger than the boundary-
layer depth becomes very small. However, this is often not the case for quantities
like temperature, humidity and the horizontal wind velocity components, implying
that they do not exhibit a spectral gap.
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3.3 Approximations and scaling

3.3.1 The incompressibility approximation

Let us denote U and L as typical velocity and length scales for the boundary
layer, cs the velocity of sound and f is the frequency of any pressure wave that
might occur. The density drops out of the continuity equation if the following
conditions are satisfied, (1) U � 100 ms−1, (2) L� 12 km, (3) L� c2s/g, and (4)
L � cs/f . For the boundary layer these conditions are usually met which allows
to approximate the continuity equation (3.4) as:

∂uj
∂xj

= 0. (3.16)

This form of the continuity equation states that in shallow convection compress-
ibility effects that are embodied in dρ/dt can be neglected.

3.3.2 The linearized ideal gas law

In Chapter 2 the virtual temperature was introduced. With aid of the Reynolds-
averaged gas law it will be shown that in the vertical momentum equation density
fluctuations can be replaced by virtual potential temperature fluctuations.

If we split p, Tv and ρ into a mean and a fluctuating part, and insert this into
the gas law (3.1) we obtain,

p

Rd
+

p′

Rd
= ρTv + ρT ′

v + ρ′Tv + ρ′T ′

v, (3.17)

which after Reynolds averaging yields

p

Rd
= ρTv + ρ′T ′

v ≈ ρTv, (3.18)

which states that the gas law holds in the mean because ρ′T ′

v � ρTv. In the
following this form of the gas law will be used twice. First we subtract it from
(3.17),

p′

Rd
= ρT ′

v + ρ′Tv + ρ′T ′

v. (3.19)

Second, we can divide this equation by (3.18)

p′

p
=
ρ′

ρ
+
T ′

v

Tv
+
ρ′T ′

v

ρTv
. (3.20)
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The last term on the right-hand side is much smaller than the others and can be
neglected. In that case we arrive at the linearized perturbation ideal gas law :

p′

p
=
ρ′

ρ
+
T ′

v

Tv
. (3.21)

In the boundary layer the pressure fluctuation term is very small in comparison
to T ′

v/Tv. In the shallow convection approximation the pressure effect in (3.21) is
therefore neglected:

ρ′

ρ
= −

T ′

v

Tv
. (3.22)

By the definition of the virtual potential temperature (2.13) we can also write

ρ′

ρ
= −

θ′v
θv
. (3.23)

In a model it is not really necessary to use θ ′v fluctuations instead of ρ′. The
advantage of θv arises from an observational point of view as this quantity requires
the measurement of temperature and moisture content (and liquid water in case
of a cloudy atmosphere) which is less difficult than measuring the density.

3.3.3 The Boussinesq approximation

Let us consider the vertical component (i = 3) of the conservation of momentum
equation (3.5):

dw

dt
= −g −

1

ρ

∂p

∂z
+ ν

∂2w

∂x2

j

, (3.24)

If we (1) expand w, p and ρ into a mean and turbulent part, (2) multiply by
((ρ + ρ′)/ρ) and (3) assume that the mean state is in a hydrostatic equilibrium
(∂p/∂z = −ρg), we obtain

(

1 +
ρ′

ρ

)

dw′

dt
= −

ρ′

ρ
g −

1

ρ

∂p′

∂z
+ ν

∂2w′

∂x2

j

, (3.25)

where we assume that the viscosity is constant, and we use that the large-scale
vertical advection is typically much smaller than the fluctuations of the vertical
velocity, w � w′. The Boussinesq approximation makes use of the fact that ρ′/ρ
is on the order 3.33 × 10−3 such that 1 + ρ′/ρ ≈ 1, from which follows

dw′

dt
= −

ρ′

ρ
g −

1

ρ

∂p′

∂z
+ ν

∂2w′

∂x2

j

. (3.26)
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Or by (3.23) we can also write

dw′

dt
=
θ′v
θv
g −

1

ρ

∂p′

∂z
+ ν

∂2w′

∂x2

j

. (3.27)

The Boussinesq-approximated form of the vertical wind velocity fluctuation equa-
tion can be used to derive prognostic equations for higher-order moments like the
turbulent kinetic energy or vertical fluxes.

In summary, the derivation of the prognostic equation (3.27) for the vertical
velocity fluctuation w′ follows from Reynolds-averaging the gas law and the vertical
momentum equation. The major assumptions made are that we effectively neglect
the role of pressure perturbations on the density in the linearized gas law, and that
the mean state of the boundary layer is in a hydrostatic equilibrium.

3.3.4 Reynolds-averaged equations

As is clear from (3.15) Reynolds-averaging of a multiplication a · b leads to two
terms one of which represents a correlation term of the fluctuations a′b′. For
example, the Reynolds-averaged momentum equation reads

∂ui
∂t

+ uj
∂ui
∂xj

= −δi3g + fεij3uj −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

−
∂u′iu

′

j

∂xj
, (3.28)

and similar correlation terms of perturbations arise for the conservation equations
for heat, moisture and scalars. So the implication of Reynolds-averaging is that if
we want to predict the evolution of the mean state of the atmosphere we have to
consider the effect of turbulence.

3.3.5 Reynolds number

The Reynolds number Re gives the ratio of inertial to viscous forcings,

Re = UL/ν (3.29)

where U and L are typical velocity and length scales. Since for air ν ≈ 1.5 × 105

m2s−1, and if we take typical scaling values U = 5 ms−1 and L = 1000m, we
find that Re = 3 × 106. If we apply a scaling analysis to (3.28), it then follows
that the term including the viscosity is a factor Re smaller than the other terms.
Therefore, this term can be neglected, except in the lowers few centimeters of the
surface. Likewise, we can neglect the diffusion terms in the conservation equations
for heat, moisture and chemical species.
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3.4 Summary of approximated governing equations for

mean quantities

p = ρRdTv (3.30)

∂uj
∂xj

= 0 (3.31)

∂u

∂t
+ uj

∂u

∂xj
= −

1

ρ

∂p

∂x
+ fv −

∂u′ju
′

∂xj
(3.32)

∂v

∂t
+ uj

∂v

∂xj
= −

1

ρ

∂p

∂y
− fu−

∂u′jv
′

∂xj
(3.33)

∂θ

∂t
+ uj

∂θ

∂xj
= −

1

ρcp
LpE −

1

ρcp

∂Fj
∂xj

−
∂u′jθ

′

∂xj
(3.34)

∂qt
∂t

+ uj
∂qt
∂xj

= +
Sqt
ρ

−
∂u′jq

′

t

∂xj
(3.35)

∂c

∂t
+ uj

∂c

∂xj
= +Sc −

∂u′jc
′

∂xj
(3.36)

Because the liquid water potential temperature is conserved for isentropic (re-
versible) processes in which condensation/evaporation of cloud liquid water oc-
curs this quantity is more convenient to use than θ. In particular, the Reynolds-
averaged form of the liquid water potential temperature equation reads

∂θl
∂t

+ uj
∂θl
∂xj

= −
1

ρcp

∂Fj
∂xj

−
∂u′jθ

′

l

∂xj
. (3.37)

By replacing every θl occurence by θe we obtain an identical entropy conservation
equation in terms of the equivalent potential temperature. In the entropy equation
the effect of latent heat release is incorporated in θl, and comparison to the heat
equation (3.34) shows that it does not need to be included by a separate term.

3.5 Governing equations for second-order moments

One can derive a large set of prognostic equations for the mean of any arbitrary
second-order moment a′b′, for instance the vertical velocity variance w′2 or the
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qv = 0 qv > 0 , ql = 0 ql > 0
gas law T Tv Τv
conservation of momentum θ θv θv
conservation of heat/entropy θ θ θl  or θe

Figure 3.2: Summary of temperature variables. The columns show the following
conditions: no moisture (qv = 0), moisture but no liquid water (qv > 0, ql = 0), or
the presence of liquid water clouds ql > 0, and the rows the equations for which
the temperature variables are appropriate.

turbulent heat flux u′iθ
′. The prognostic equation for the vertical velocity variance

u′iu
′

i is given by,

∂u′2i
∂t

+ uj
∂u′2i
∂xj

= 2δi3
g

θv
u′iθ

′

v − 2u′iu
′

j

∂ui
∂xj

−
∂u′ju

′2

i

∂xj
−

2

ρ

∂u′ip
′

∂xi
− 2ε. (3.38)

The prognostic equation for the flux w′ψ′ reads,

∂u′iψ
′

∂t
+ uj

∂u′iψ
′

∂xj
= −u′jψ

′
∂ui
∂xj

− u′iu
′

j

∂ψ

∂xj
−
∂u′iu

′

jψ
′

∂xj
+ δi3

g

θv
ψ′θ′v

+ fεij3u′jψ
′ −

1

ρ

(

ψ′
∂p′

∂xi

)

+ νψ
∂2u′iψ

′

∂x2

j

− 2νψ

(

∂u′i
∂xj

)(

∂ψ′

∂xj

)

(3.39)

where ψ ∈ {θ, qt, c} and we assumed no source terms (Sψ = 0) and no radiation.
The prognostic variance equation for ψ reads

∂ψ′2

∂t
+ uj

∂ψ′2

∂xj
= −2u′jψ

′
∂ψ

∂xj
−
∂u′jψ

′ψ′

∂xj
− 2νψ

(

∂ψ′

∂xj

)2

(3.40)

3.6 Summary

Figure 3.2 summarizes the temperature variables and three equations discussed in
Chapters 1-3.
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Part II - Cloud dynamics
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Chapter 4

Introduction

Figure 4.1: The daytime global stratocumulus amount. Source: The International
Satellite Cloud Climatology Project (ISCCP), http://isccp.giss.nasa.gov/.

Stratus, stratocumulus and shallow cumulus are all classified as boundary layer
clouds. Stratus and stratocumulus are layered clouds having cloud fractions close
to unity. Shallow cumulus can be characterized by its broken structure and small
cloud fraction. Figure 4.1 shows that there is a very persistent presence of stra-
tocumulus clouds in the subtropical areas west of the American continent and
Africa. The presence of stratocumulus in the subtropics can be understood by
considering the mean flow pattern in subtropics (see Figure 4.2). Due to the
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Figure 4.2: Schematic cross section through the trades and ITCZ illustrating the
circulation and moistening of the subcloud layer and cloud layer. ’Ev ’ indicates
the surface moisture flux, and ’sc’ and ’cu’ denote stratocumulus and cumulus
clouds, respectively.

large-scale subsidence in the descending branch of the Hadley circulation the ob-
served boundary layers in the subtropical regions are usually relatively shallow.
The boundary layers are capped by a stable temperature inversion that acts to
trap the moisture that is evaporated from the sea surface. This supports the
formation and maintenance of horizontally extended stratocumulus fields. The
surface winds transport air from the subtropics towards the equator. Along this
path the sea surface temperature gradually increases and a subsequent transition
from stratocumulus to cumulus takes place.

Figure 4.3 shows a selection of observations of the downwelling shortwave ra-
diation under a stratocumulus cloud deck for which the cosine of the solar zenith
angle θ0 has a fixed value, µ0 = cos θ0 = 0.95. It is clear that stratocumulus clouds
can reflect back to space a significant part of the downwelling shortwave radiation.
The line shows modeling results obtained with a δ-Eddington model, which will
be explained in detail later in this course.

Stratus is also frequently observed in the Arctic region. The formal distinction
between stratus and stratocumulus is the cloud optical thickness (τ), where τ > 23
(τ < 23) defines stratus (stratocumulus). However, in practice this definition is
rarely strictly applied and in the scientific literature it is not rare to find that a
cloud type is called stratus instead of stratocumulus, and vice versa. In particular
during the dark winter period Arctic stratus has a strong net warming effect
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Figure 4.3: The downward short-wave irradiance around solar noon (µ0 = 0.95) at
the surface as a function of optical depth. The dots indicate observations on San
Nicolas island and the line results from calculations with a δ-Eddington model.
In the model the downwelling shortwave radiation at cloud top was 1100 Wm−2,
and the magnitude of the sea surface albedo was 0.05.

due to its emission of longwave radiation. Figure 4.4 displays observations at
the SHEBA (Surface Heat and Energy Balance of the Arctic Ocean) ice camp
during the Arctic spring. It clearly shows that the net longwave radiation at the
surface increases sharply by an amount of about 60 Wm−2 during the presence of
a cloud layer extending to the surface (fog). Note that the figure shows the liquid
water path while the temperature during the observations was below freezing,
which implies that the cloud must have consisted of supercooled liquid water. The
increase in the downwelling longwave radiation is due to the presence of cloud
water. Stratus and stratocumulus are optically thick and emit radiation as a
black body as opposed to a clear atmosphere which emits longwave radiation as
a grey body. As a consequence, more infrared radiation is emitted downwards
from the cloud top than is received from the atmosphere above, as is illustrated
from aircraft observations shown in Figure 4.5. The largest jump in the downward
longwave radiation takes place in a shallow layer of several tens of meters thick
near the cloud top. In this layer local radiative cooling rates exceeding more than
8 K/hour are not exceptional. It causes radiatively cooled air parcels to sink
downwards, thereby redistributing the colder temperatures throughout the cloud
mixed layer. There is also a small jump at cloud base which leads to warming.

The radiative cooling of the stratocumulus cloud top generates turbulence
that causes conserved variables such as the liquid water potential temperature
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Figure 4.4: Time series of the liquid water path (upper panel) and the net longwave
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The liquid water path data were obtained with a microwave radiometer and were
kindly provided by Dr. J. Liljegren. The measurements were made from 20 to 22
May 1998 (Julian day 140 to 142) at the SHEBA ice camp (76◦N, 166◦W)

.
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Figure 4.5: The observed upward and downward longwave radiation (left panel)
and the net longwave radiation (right panel, same vertical scale as right panel)
as a function of height in a stratocumulus-topped boundary layer during ASTEX.
The asterisks ’∗’ and the diamonds ’♦’ represent mean values during a horizontal
aircraft leg (± 60 km), and the line indicates results from a slant profile.

and the total specific humidity to become vertically well mixed (see Figure 4.6 for
a schematic illustration). From the cloud base to the cloud top the total water
specific humidity exceeds the saturation value, i.e. qt > qsat, and due to latent
heat release effects the virtual potential temperature approximately follows the
wet-adiabatic lapse rate. The cloud top is capped by a strong stable inversion
layer in which the temperature can increase by more than 10 ∼ 15◦C over a
vertical distance of less than 50 m.

During daytime, a significant amount of solar radiation is absorbed by the
cloud layer. The solar absorption extends deeply into the cloud layer. As a result,
the cloud layer can get warmer more rapidly than the subcloud layer, causing a
very small virtual potential temperature jump near the cloud base. In that case
the cloud layer becomes stably stratified with respect to the subcloud layer, and
the transport of heat and moisture into the stratocumulus cloud by convective
eddies driven from the surface is effectively reduced and sometimes even cut off.
Radiative cooling will maintain the generation of convection from the cloud top,
which results in two well-mixed turbulent layers that are decoupled and only inter-
act weakly. Decoupling may lead to a breakup of the cloud because, firstly, solar
radiative absorption will cause evaporation of cloud liquid water, and secondly,
the cloud layer will dry out if entrainment of dry air at the cloud top continues
while the moisture supply at the cloud base by the surface-driven eddies is reduced
significantly. Even if these two processes do not lead to a full dissipation of the
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Figure 4.6: Schematic of typical mean profiles for the total specific humidity qt,
the saturation specific humidity qsat and the virtual potential temperature θv in
a) the clear convective boundary layer, b) stratocumulus and c) cumulus.
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Figure 4.7: Schematic of typical buoyancy flux (g/θ0w′θ′v) profiles in the clear
convective boundary layer (left), stratocumulus (middle), and cumulus (right).

cloud layer, they will at least cause a change in the cloud structure. Because of
the diurnal cycle of the sun, the cloud amount and cloud fraction will be maximal
before and near sunrise while the minimal cloudiness occurs around local noon.
Other mechanisms that can cause a temperature jump near cloud base are evap-
oration of drizzle below cloud base and the subsequent cooling of the subcloud
layer.

The subcloud layer of a cumulus-topped boundary layer is also vertically well-
mixed. This does not apply to the cloud layer in which the virtual potential
temperature profile is in between the dry and the wet-adiabatic lapse rate. Note
that in the cloud layer the mean specific humidity is lower than the saturation
value (qt < qsat).

Typical examples of vertical profiles for the buoyancy fluxes are displayed in
Figure 4.7. In the clear convective boundary the buoyancy flux is approximately
linear with height, and the minimum value at the boundary-layer top is due to the
downward turbulent mixing (entrainment) of warm air from above the inversion
layer. In stratocumulus the longwave radiative cooling explains the sharp jump
in the buoyancy flux profile near the cloud top as the cooling produces cold air
parcels that sink downwards. The sharp increase in the buoyancy flux that occurs
near the cloud base is resulting from latent heat release by condensation of cloud
liquid water. Thus both latent heat release effects and longwave radiative cooling
act to generate a positive buoyancy flux in the cloud layer. The minimum flux at
the cloud top is also due to the entrainment of warm air from above the inversion.
In the case of cumulus convection, the buoyancy flux is negative near the top of
the subcloud layer. At these levels only the strongest thermals that have sufficient
upward momentum can rise through and become saturated. Above this level
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the release of latent heat causes the virtual potential temperature difference with
respect to the environment to become positive again.

An accurate representation of boundary-layer clouds in large-scale models is
problematic. This can be clearly illustrated from a comparison of ECMWF Re-
Analysis (ERA) data to observations. The ERA project has produced a new 15
year data set of assimilated data for the period 1979 to 1993. ERA was produced
using the ECMWF Integrated Forecasting System (IFS), that contains both the
model and the analysis part of the data assimilation system. The ERA data can
thus be considered as the best estimate available of the state of the atmosphere
for a given time. Figure 4.8 shows the monthly mean diurnal variation of the
vertically integrated liquid water content (the liquid water path (LWP)) from
stratocumulus observations collected during July 1987 off the coast of California,
in addition to monthly-mean ERA results for July 1987, and the average for five
subsequent July periods between 1985 and 1989. The overall picture is of a cloud
layer that progressively thins during the late morning into the afternoon, and
thickens again during the evening. The model strongly underestimates the amount
of stratocumululs. This is particularly striking when we compare the peak values
of the LWP: about 150 g m−2 for the observations and about 20 g m−2 for the
model in July 1987. The 5 year mean values for ERA are even lower than the July
1987 values.

The effects of an underestimation of the stratocumulus cloud deck has a dra-
matic effect on the prediction of the sea surface temperature (SST). For example,
the SST off the coast of Peru can obtain a warm bias of about 5 K if the stra-
tocumulus amount is underestimated (Ma et al., 1996). This leads to too much
solar radiation reaching the surface. This deficiency is in particular relevant for
the simulation and the prediction of the El Nino - Southern Oscillation (ENSO).

In the following we will discuss the dynamics of stratocumulus and cumulus
clouds. The set-up will be based on the schematic shown in Figure 4. The physical
processes in boundary layer clouds will be illustrated mainly from observations and
results from Large-Eddy Simulation (LES) models. An LES model is a numerical
tool that can solve the turbulence field in clear and cloudy atmospheric boundary
layers. The results obtained from observations and LES have provided very much
insight of the turbulence and microphysical structure in boundary-layer clouds.
This knowledge can be used to design parameterization schemes for the compu-
tation of the turbulent transport of heat and moisture in cloud-topped boundary
layers. In general circulation models (GCMs) this is a necessity because the tur-
bulent eddies are not resolved by the coarse grid resolution in current GCMs.
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Figure 4.8: Mean diurnal variation of liquid water path: FIRE I observations
from 1 to 19 July 1987 (thin line), July 1987 of ERA (thick full line) and July
1985/86/87/88/89 of ERA (dashed line) Duynkerke and Teixeira (2001).
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Figure 4.9:
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Chapter 5

Stratocumulus clouds

The formation and maintenance of stratocumulus is supported by large-scale sub-
sidence nearby a high pressure system and the input of sufficient moisture from
the surface. However, due to turbulent motions at the top of the cloud relatively
warm and dry air from above the capping inversion is entrained and subsequently
mixed into the cloud layer. It will be explained that the entrainment rate is crucial
for understanding the evolution of the stratocumulus-topped boundary layer.

Most of the topics contained in this chapter are also discussed, though with
less mathematical details, in Chapter 7 of the book ’The atmospheric boundary
layer’ by Garratt (1994).

5.1 Turbulent transport in stratocumulus clouds

A typical feature of the clear convective and the nocturnal stratocumulus-topped
boundary layer is that conserved variables are approximately constant with height.
If the vertical gradient of any mean variable ψ ∈ {qt, θl, c} does not change with
time we can write

∂

∂z

(

∂ψ

∂t

)

= 0, (5.1)

a situation that is refered to as a quasi-steady state. Eq. (5.1) has a direct
consequence for the shape of the vertical flux profiles. Let us consider a boundary
layer that is horizontally homogeneous (∂/∂xi(u′iχ

′) = 0 for i = 1, 2) and assume
that there is neither mean advection nor radiation. In that case the tendency of
ψ will be determined by a change with height of the vertical turbulent flux,

∂ψ

∂t
= −

∂w′ψ′

∂z
, (5.2)
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and by Eq. (5.1)
∂

∂z

(

∂ψ

∂t

)

= −
∂2w′ψ′

∂z2
= 0, (5.3)

which implies that the vertical gradient of the flux is constant,

∂w′ψ′

∂z
= constant =⇒ w′ψ′ = w′ψ′

0(1 − z/zi) + w′ψ′

T z/zi. (5.4)

with zi the boundary layer height and the indices ’0’ and ’T’ indicating the surface
and top values for the flux, respectively. For an infinitesimally thin inversion layer
the flux at the boundary layer top can be expressed as

w′ψ′

T = −we∆ψ, (5.5)

with ∆ψ the jump across the inversion, and we the entrainment velocity. The
latter gives the rate with which the boundary layer height grows with time by the
turbulent mixing of free atmospheric air into the boundary layer,

dzi
dt

= we + w, (5.6)

with w the large-scale velocity. Thus, the surface and entrainment fluxes of heat
and moisture determine the temporal evolution of a convective boundary layer.
The surface fluxes can be computed by using relations such as given by Monin-
Obukhov similarity theory. By contrast, there are currently no scaling relations
available that accurately predict the entrainment rate in stratocumulus clouds.

5.2 The mixed-layer model

A mixed-layer model assumes a quasi-steady state boundary layer and includes
the effect of radiation or precipitation. The model consists of just three equations
and is therefore a very powerful tool to understand the dynamics of stratocumulus.
The details of the model that is discussed in this section are adapted from Nicholls
(1984), who presents the mixed layer model with θe as entropy variable. The
model described here uses θl and qt as conserved variables. For simplicity we
assume that the effect of moisture and liquid water on cp and Lv can be neglected.
Figure 5.1 shows the typical variation of θl and ql to illustrate certain significant
levels, labelled 0 to 4. Cloud top and cloud base are assumed to lie between levels
3 and 4, and 1 and 2, respectively so that levels 2 and 3 are entirely within cloud
while the others lie entirely outside.

In summary: levels 0-3 lie within the mixed layer; levels 2 and 3 lie within the
cloud layer; and levels 0 and 1 lie within the subcloud layer. Since levels 1 and 2
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Figure 5.1: Schematic diagram showing idealized ql and θl profiles with significant
level notation.

are very close together and within the mixed layer, no flux divergence of conserved
variables may occur between them.

At level 3, entirely within the cloud, the turbulent fluxes are assumed to be
related to the jumps in variables between levels 3 and 4 according to the flux-jump
relation (5.5). Since these two levels also have a negligible height separation, no
radiative flux divergence is allowed between them, i.e. all the radiative heating
and cooling occurs within the cloud. This is prescribed at additional levels within
the cloud layer.

The rates of change of conserved variables within the mixed layer may then be
expressed as

dqt
dt

= −
∂w′q′t
∂z

, (5.7)

and
dθl
dt

= −
∂w′θ′l
∂z

−
∂F

∂z
, (5.8)

so it is implicitly assumed that mean horizontal gradients are small. The net
radiation flux F is defined by

F =
1

ρcp
(L ↑ −L ↓ +S ↑ −S ↓) + F0 (5.9)

with L and S denoting the longwave and shortwave radiation, respectively. F0

is a height-independent reference value chosen for convenience to make F zero
in the subcloud layer since only the flux divergence within the cloud layer is of
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importance here, rather than the absolute value. We assume that there is no
precipitation.

As the tendencies for qt and θl must be independent of height within the mixed
layer, integrating Eqs. (5.7) and (5.8) between levels 0 and 3 yields

dqt
dt

=
we∆qt + w′q′t0

zi
, (5.10)

and
dθl
dt

=
we∆θl + w′θ′l0

zi
+ F3 − F0, (5.11)

where we used the entrainment-jump relation (5.5) and for the mixed-layer depth
zi the height of level 3, z3 = zi.

Vertically integrating Eq. (5.7) from level 0 to some arbitrary level p (such
that zp ≤ zi) and substituting Eq. (5.10) gives

w′q′tp = w′q′t(z = zp) =

(

1 −
z

zi

)

w′q′t0 −

(

z

zi

)

we∆qt, (5.12)

and likewise

w′θ′lp =

(

1 −
z

zi

)

(

w′θ′l0 + F0

)

+
z

zi

(

F3 −we∆θl
)

− Fp. (5.13)

Turbulent transfer is assumed to be extinguished at level 4 by the strong stable
stratification and the turbulent fluxes are therefore set to zero. Note in the absence
of sources and sinks the flux equation for a passive scalar c is given by

w′c′p =

(

1 −
z

zi

)

w′c′0 −

(

z

zi

)

we∆c. (5.14)

The mixed-layer model is thus given by the prognostic equation for the bound-
ary layer height (5.6) and by the two flux equations, (5.12) and (5.13), which shows
that the variation of w′q′t and w′θ′l with height within the boundary layer can be
calculated given the following information:

• Initial values of θl and qt within the boundary layer.

• Initial values of cloud base and cloud top heights.

• The jumps of θl and qt across the inversion.

• F (z) specified through the cloud layer.

• That some measure of the entrainment rate we is available or that some
relationship between we and other computed parameters exists.

50



If the model is to be used in a predictive capacity, the main problems arise in
relating the entrainment process through we to the calculated turbulent character-
istics and in determining whether the predicted structure is likely to remain well
mixed. This requires, at minimum, some consideration of the turbulent kinetic
energy balance within the boundary layer.

If the model is to be used to aid interpretation of observations it is still useful
to diagnose quantities which are actually measured, i.e. w ′θ′v or w′q′t.

5.2.1 The buoyancy flux in the stratocumulus-topped boundary
layer

The mixed-layer model uses conserved variables. However, the vertical turbu-
lent motions in an cloudy atmosphere are primarily driven by the buoyancy flux
(g/θv)w′θ′v, so it is tempting to derive an expression that relates the fluxes of
conserved variables w′θ′l and w′q′t to the buoyancy flux (or the virtual potential
temperature flux w′θ′v). The virtual potential temperature flux in a saturated
environment is given by,

w′θ′v = w′θ′(1 + εIqs − ql) + θ(εIw′q′s − w′q′l), (5.15)

where according to Eq. (2.12)

εI = 1/ε− 1 = Rv/Rd − 1 = 0.61, (5.16)

and w′q′s represents the saturated water vapor flux. In the unsaturated subcloud
layer all the water is in the vapor phase (ql = 0 and qt = qv), so in that case the
virtual temperature flux reduces to

w′θ′v = w′θ′(1 + εIqt) + θεIw′q′t. (5.17)

For unsaturated conditions we also have that the liquid water potential temper-
ature flux reduces to the potential temperature flux w ′θ′l = w′θ′ − (Lv/cp)w′q′l =
w′θ′. Thus, for an unsaturated atmosphere the virtual potential temperature flux
in terms of conserved variables reads

w′θ′v = w′θ′l(1 + εIqv) + θεIw′q′t = Adw′θ′l +Bdw′q′t, (5.18)

by which we have defined the coefficient Ad ≈ 1.01 and Bd ≈ 170 for dry convec-
tion.

For the cloud layer the derivation is less straightforward. With aid of Eq.
(5.16) and using that qt = qs + ql we can write

εIqs − ql = (1 + εI)qs − qt =
qs
ε
− qt. (5.19)
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Using this expression we can rewrite Eq. (5.15):

w′θ′v = w′θ′(1 +
qs
ε
− qt) + θ(

w′q′s
ε

− w′q′t). (5.20)

The Clausius-Clapeyron equation (1.55) can be expressed in terms of the satura-
tion specific humidity,

dqs
dT

=
qslv
RvT 2

. (5.21)

If we write dqs = q′s and dT = T ′ then saturation specific humidity fluctuations
are uniquely related to perturbations in the temperature,

q′s =
qslv
RvT 2

T ′ ⇐⇒ q′s =

(

dqs
dT

)

T ′. (5.22)

This facilitates to write the saturation specific humidity flux as a (potential) tem-
perature flux,

w′q′s =

(

dqs
dT

)

w′T ′ ≈

(

dqs
dT

)

w′θ′, (5.23)

where the error in the last approximation is less then a few percent. No we can
substitute w′q′s out of (5.20) to obtain

w′θ′v = w′θ′
[

1 +
qs
ε
− qt +

θ

ε

(

dqs
dT

)]

− θw′q′t. (5.24)

Next, we use w′θ′ = w′θ′l + (Lv/cp)w′q′l to give

w′θ′v = w′θ′l

[

1 +
qs
ε
− qt +

θ

ε

(

dqs
dT

)]

+ w′q′l

(

Lv
cp

)[

1 +
qs
ε
− qt +

θ

ε

(

dqs
dT

)]

− θw′q′t.

(5.25)

Last, we would like to substitute out the liquid water flux w ′q′l. To this end we
write

w′q′l = w′q′t − w′q′s = w′q′t −

(

dqs
dT

)

w′θ′

= w′q′t −

(

dqs
dT

)[

w′θ′l +

(

Lv
cp

)

w′q′l

]

,

(5.26)

which yields for w′q′l

w′q′l =
w′q′t

1 + Lv

cp

(

dqs
dT

) −
w′θ′l

(

dqs
dT

)

1 + Lv

cp

(

dqs
dT

) . (5.27)
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The final expression for the virtual potential temperature flux in a saturated at-
mosphere is then given by

w′θ′v = Aww′θ′l +Bww′q′t, (5.28)

with coefficients Aw and Bw having a weak temperature dependency,

Aw =
1 + qs

ε − qt +
θ
ε

(

dqs
dT

)

1 + Lv

cp

(

dqs
dT

) ≈ 0.5, (5.29)

and

Bw = Aw

(

Lv
cp

)

− θ ≈ 1100. (5.30)

In summary, from Eqs. (5.12) and (5.13) we can obtain the vertical fluxes for
qt and θl, respectively. Given these fluxes, the buoyancy fluxes in the subcloud
and cloud layer follow straightforwardly from Eqs. (5.18) and (5.28), respectively.

With the mixed-layer model we are capable to address the following questions:
• How does the buoyancy flux profile in the stratocumulus-topped boundary

layer look like?
• Turbulent eddies are capable to penetrate into the inversion layer and mix

free atmosphere air into the boundary layer. One may intuitively argue that more
buoyancy production of turbulent kinetic energy will support more entrainment.
Is this indeed the case?

• What is cloud-top entrainment instability?
• Sometimes a two-layer turbulence structure is found in the stratocumulus-

topped boundary layer. During the day this is often due to cloud warming by the
absorption of shortwave radiation which can lead to a local stable stratification
near the cloud base. How can we explain a decoupling between the subcloud and
cloud layer during the night?

5.3 Results from a mixed-layer model

We computed flux profiles for nocturnal stratocumulus with the mixed-layer model
for different entrainment rates. The boundary conditions are displayed in Table
5.1. During the night there is no solar radiation, and the longwave radiation profile
is based on Figure 4.5, with F3 = 70 W/m2 and linearly decreasing to a zero net
radiative flux over a downward vertical distance of 30 m (F = 0 W/m2 for z <
zi − 30m).

Figure 5.2 shows that the total water flux is linear with height. For all entrain-
ment rates shown, the flux gradient is positive indicating that for the examples
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Parameter value units

w′θ′l0 0.0033 mKs−1

w′q′t0 0.007 ms−1(g kg−1)

∆θl 6.2 K
∆qt -1.2 g kg−1

cloud base 240 m
cloud top 755 m

Table 5.1: Boundary conditions used for the mixed-layer model.
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Figure 5.2: Vertical flux profiles computed with a mixed-layer model. Shown
are w′θ′l (left panel), w′q′t (middle panel) and w′θ′v (right panel). The three lines
indicate results obtained for different entrainment rates, 0.8 (dashed line), 1.2
(solid line) and 1.6 (dotted line) cms−1, respectively.

54



shown entrainment drying exceeds the turbulent flux of moisture from the sur-
face. The case with the largest entrainment rate has the largest drying rate of the
boundary layer. The liquid water potential temperature flux has a sharp jump
at the boundary-layer top due the longwave radiative flux divergence; below this
radiatively cooled layer the flux is linear with height.

Most particular is the shape of the virtual potential temperature flux profile.
Because the fluxes of qt and θl are continuous near the cloud base the jump of w′θ′v
must be due to the different coefficients used in Eqs. (5.18) and (5.28). Because
Aw < Ad and Bw > Bd, the positive values for w′θ′v are predominantly due to
latent heat release effects incorporated in the total water flux. Although at the
top of the boundary layer w′θ′v < 0 by entrainment of warm air, the entrainment
warming is more than compensated by the longwave radiative cooling as just below
the radiatively cooled layer the virtual potential temperature flux is positive.

It is interesting to note that smaller values for w ′θ′v are associated with larger
entrainment rates. The interpretation is that more entrainment leads to more
downward mixing (w′ < 0) of warm air (θ′v > 0) which tends to diminish the
buoyancy flux.

Last, a careful inspection of magnitude of the virtual potential temperature
flux below the cloud base shows that it can become negative. This implies that at
the top of the subcloud layer the upward motions of the relatively moist thermals
driven from the surface are damped. If the virtual potential temperature flux is
sufficiently negative, the thermals may not be capable anymore to penetrate into
the cloud layer. In that case the transport from moisture from the surface into the
cloud layer is significantly reduced or even cut off, a situation which is referred to
as decoupling. Because entrainment continues to mix in warm and dry air from
above, decoupling can lead to a rapid thinning of the cloud layer.

5.3.1 Buoyancy reversal

The virtual potential temperature flux at the top of the cloud layer can be written
as

w′θ′vT = Aww′θ′lT +Bww′q′tT = −we(Aw∆θl +Bw∆qt), (5.31)

where we used the entrainment-jump relation (5.5). If

∆θl < −
Bw
Aw

∆qt (5.32)

the virtual potential temperature flux due to entrainment becomes positive, w ′θ′vT >
0. For ∆qt in g/kg, Bw/Aw ≈ 2.2. The physical interpretation of this finding is
as follows. If warm and dry air from above the inversion is entrained and subse-
quently mixed into the cloud layer, the mixed parcel will experience some cooling
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due to the evaporation of cloud droplets. Under certain conditions, the cooling will
more than compensate the warming due to entrainment, and as a result the mixed
parcel will become negatively buoyant with respect to its environment, which is
referred to as buoyancy reversal. Because a negatively buoyant parcel will have a
higher density with respect to its environment, it will sink and generate turbulent
kinetic energy, promoting further entrainment. This process is called cloud-top
entrainment instability (CTEI). It has been suggested that CTEI can lead to a
rapid dissipation of stratocumulus, or, that it might be important in the transition
from stratocumulus to cumulus (Randall, 1980; Deardorff, 1980).

Several CTEI criteria have been proposed in the literature based on differ-
ent physical assumptions or from a laboratory study. Nevertheless, none of the
proposed CTEI criteria has been generally accepted as being a mechanism re-
sponsible for stratocumulus break-up. On the contrary, Kuo and Schubert (1988)
analyzed rawinsonde soundings presented in the literature to evaluate the CTEI
criterion (5.32), and the effects of CTEI on cloud amount, and concluded that
stratocumulus can persist for extended periods, even though the CTEI criterion
was satisfied.

5.4 Entrainment

From the analysis with the mixed-layer model it is clear that the entrainment
fluxes of heat and moisture play a major role in determining the evolution of the
cloud layer. From this perspective it is rather unfortunate that there are only
a few measurements available of the entrainment rate in stratocumulus clouds.
There are a few different approaches possible to estimate the entrainment rate
from observations.

First, we could use observations of the temporal evolution of the cloud-top
height (zi) from remote-sensing devices or tethered-balloon observations, and uti-
lize Eq. (5.6), which is repeated here for convenience,

dzi
dt

= we + w.

As an example, Figure 5.3 displays the inversion height which approximately cor-
responds to the cloud-top height. If one would have information of the subsidence
rate Eq. (eq:zi) would then straightforwardly give the entrainment rate. The dif-
ficulty of this approach is that the large-scale subsidence w at cloud top is on the
order of 1 cms−1 and hard to measure, although some researchers have used the
horizontal wind velocities from observations like radiosondes to estimate w from
the continuity equation (∂w/∂z = −(∂u/∂x+ ∂v/∂y). Otherwise, estimations for
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Figure 5.3: The cloud-base (open circles connected by the dashed line) and cloud-
top height (filled circles and solid line) from observations as a function of time
for 14 and 15 July 1987 (denoted from 0 to 48 hours Local Time). The plot
symbols are according to the legend. Cloud-base height was measured by a Väisälä
CT 12K laser ceilometer and a sodar was used to estimate the inversion height
capping the cloud top. These instruments were operated on San Nicolas island,
approximately 33◦15′N and 119◦30′W , to monitor cloud properties with a high
temporal resolution. The cloud layer depth shows a distinct diurnal cycle. During
the night the cloud layer becomes thicker, but during the day there is a gradual
thinning due to cloud warming by the aborption of solar radiation.
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Figure 5.4: Aircraft observations of the virtual potential temperature flux (black
diamonds) in a stratocumulus-topped boundary layer over the Atlantic Ocean
during ASTEX. The mixed-layer model was utilized to estimate the entrainment
rate by fitting the computed virtual potential temperature flux (solid line) to the
observations. For this case an entrainment rate of 0.93 cms−1 was found. From
Duynkerke et al. (1995).

w may be taken from General-Circulation Models, although the modeled large-
scale vertical velocity fields do sometimes exhibit unphysical oscillations which
casts some doubt on its accuracy. Also note that the inversion height may change
by large-scale horizontal advection, provided the presence of a large-scale horizon-
tal gradient in the inversion height.

Second, aircraft observations of turbulent fluxes of conserved variables at dif-
ferent heights can be used. If it is assumed that the boundary layer is in a quasi-
steady state, the fluxes will be linear and the flux just below cloud top can be
extrapolated from the observations. If the jump across the inversion is measured,
the flux-jump relation (we = −w′ψ′

T /∆ψ) can be applied. The quantity ψ may
be the total specific humidity, ozone, or dimethyl sulfide (DMS). In principle, with
aid of Eq. (5.13) this approach can also be used for θl or θe, but this requires to
take the radiative flux divergence into account.

Third, one can do a budget study by analysis of the variation with time for
mean quantities in the boundary layer. In the absence of sources and sinks, the
tendencies are controlled only by the surface and entrainment fluxes.

Last, given observations of the buoyancy flux, the mixed-layer model can be
used as a diagnostic tool to estimate the entrainment rate. If measurements are
available of the radiation profile and the boundary conditions similar to the quan-
tities shown in Table 5.1 one can fit the mixed-layer model buoyancy flux profile
to the observations. Figure 5.4 gives an example of this approach.

In the following we will explore whether similarity relationships for the clear

58



convective boundary layer (CBL) can be applied to stratocumulus. In the CBL
the virtual potential temperature flux is linear with height (see Figure 4.7), and
its value at the top of the mixed layer is approximately a constant fraction A ≈ 0.2
of the surface flux,

w′θ′vT = −we∆θv = −Aw′θ′v0
, (5.33)

where we used the flux-jump relation (5.5). The convective scaling velocity w∗

gives a measure of the buoyancy flux production of turbulent kinetic energy and
is defined as

w∗ =

[

2.5
g

θ0

∫ zi

0

w′θ′vdz

]1/3

. (5.34)

Note that for A = 0.2 the factor 2.5 in Eq. (5.34) cancels if one computes the
integral with the flux at the top given by (5.33) :

w3

∗
= 2.5

g

θ0

∫ zi

0

[

w′θ′v0
(1 −

z

zi
) + w′θ′vT

z

zi

]

dz =
g

θ0
w′θ′v0zi. (5.35)

By defining a Richardson number Riw∗
for convectively driven layers,

Riw∗
=
gzi
θ0

∆θv
w2
∗

, (5.36)

we can express a scaling relation for the entrainment rate

we
w∗

= ARi−1

w∗
. (5.37)

This formula predicts the entrainment rate in the CBL, and it is interesting to see
whether it may also be applied to stratocumulus. Entrainment rates have been
determined on the basis of observations made by aircraft in stratocumulus over
the North Sea and the Atlantic Ocean. The latter case was part of ASTEX (At-
lantic Stratocumulus to Cumulus Transition Experiment), a large field experiment
dedicated to the study the transition of stratocumulus to cumulus in the Hadley
circulation. Figure 5.5 shows systematic larger values for the entrainment rate in
stratocumulus which suggests that the entrainment rate is larger than in the CBL.

Entrainment rate parametrizations often include the convective velocity scale
w∗ as measure of the buoyancy forcing. Scaling the entrainment rate in stra-
tocumulus is complicated not only because the buoyancy flux depends on the
entrainment rate, but also since the number of free parameters that determine the
vertical profile of the buoyancy flux is much larger than that for the dry convec-
tive boundary layer. In the latter case, the entrainment rate is proportional to
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Figure 5.5: Flux-derived entrainment rates with error bars as a function of the con-
vective Richardson numberRiw∗

for Flights 1-4 from the ASTEX First Lagrangian.
Also plotted are aircraft-derived entrainment rates by Nicholls and Turton (1986)
(’NT’) and the scaling relation for the entrainment in the clear convective bound-
ary layer, Eq. (5.37) with A = 0.2. Symbols and lines are according to the legend.
From De Roode and Duynkerke (1997).

the ratio of the surface buoyancy flux w′θ′v0
and the buoyancy jump across the

inversion ∆θv. However, according to Eq. (5.28) the total water flux gives a large
contribution to the buoyancy flux in a stratocumulus cloud layer, which is due to
the condensation and evaporation of liquid water droplets. For this reason, the
surface moisture flux, the total specific humidity jump across the inversion, the
cloud-base and cloud-top heights, and the long-wave radiative flux divergence at
the cloud top (∆Fl) are all relevant quantities. In summary, if we assume that the
entrainment rate depends on the vertical profile of the buoyancy flux, a general
scaling expression will depend on the following quantities

we = f(w′θ′v(z)) = f(w′θ′l0, w
′q′0,∆θl,∆qt, cb, ct,∆Fl). (5.38)

In addition, short-wave radiative absorption in the cloud layer during daytime,
windshear, and drizzle also affect the buoyancy flux profile. The sensitivity of the
buoyancy flux to the quantities summarized above, and the role of the entrainment
rate on the buoyancy flux vertical profile can all be clearly illustrated by means
of a mixed layer model.
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Chapter 6

Shallow Cumulus Clouds

6.1 Introduction

Figure 6.1 shows a detailed satellite image of shallow cumuli over Florida. An
important feature of a cumulus cloud layer is that the mean relative humidity is
below saturation, RH < 100%. The typical cumulus cloud cover can be rather
low, on the order of 0.1. Their vertical extent is about 1 ∼ 2 km, which is small
enough to be non-precipitative. If the cumuli get deeper, precipitation becomes
increasingly important and will interact with the dynamics. Despite their low
cloud cover, shallow cumuli play an important role in transporting heat, moisture
and pollutants from the boundary layer to the free atmosphere. As a simple,
yet illustrative example of cumulus convection we will limit ourselves to shallow
cumulus clouds, which are, by the absence of precipitation, also referred to as
fair-weather cumulus.

As a first step to understanding the presence of cumulus clouds we will study
air parcels that rise isentropically. Second, we will use observations as a basis for
explaining some generic features of shallow cumuli. The Chapter ’Shallow cumulus
convection’ written by Pier Siebesma (1998) in the book ’Buoyant Convection in
Geophysical Flows’ covers more topics than this Chapter.

6.2 Thermodynamics

6.2.1 Stability and temperature lapse rates

6.2.2 Atmospheric stability

The thermodynamic stability of the atmosphere is important in the description
of the structure of the cumulus-topped boundary layer. The stability is usually
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Figure 6.1: Shallow cumulus over Florida. Courtesy of Stephaan Rodts.

defined by the sign of the buoyant force on a vertically displaced air parcel. Con-
sider a parcel of air with a virtual temperature Tv,p in an environment with average
properties Tv(z). In the Boussinesq approximation, the net buoyant force FB per
unit mass acting on the parcel is given by Rogers and Yau (1989),

FB = g
Tv,p − Tv

T0

. (6.1)

In this equation it is assumed that the parcel’s pressure adjusts instantaneously
to the environmental pressure (pp = p). If we displace the parcel from a height z
over an infinitesimal distance δz and if the buoyancy is the only force acting on
the parcel, then the vertical velocity is given by Newton’s second law of motion,

dw

dt
=
d2δz

dt2
= FB(z + δz) − FB(z) =

dFb
dz

δz. (6.2)

From Eq. (6.2) we recognize the equation of the harmonic oscillator whose solution
is either oscillating or exponentially growing, depending on the sign of dFB/dz,

d2δz

dt2
=

g

T0

(

∂Tv,p
∂z

−
∂Tv
∂z

)

δz (6.3)

Therefore for any parcel the mean state is stable if

∂Tv,p
∂z

<
∂Tv
∂z

⇐⇒ stable (6.4)
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The vertical lapse rate of the mean virtual potential temperature determines
whether cumuli may develop. We have already seen that the dry-adiabatic lapse
rate is given by

Γd ≡ −

(

dT

dz

)

=
g

cp
, (6.5)

and we would like to derive a analogous expression for the wet-adiabatic lapse
rate. To this end we will consider an isentropically rising air parcel that does not
mix with its environment. The most convenient quantities to use are the liquid
water potential temperature and the total water content which will be conserved
for the process:

θl = θ −
lv
cp
ql = constant , qt = qs + ql = constant. (6.6)

Here we will neglect the influence of moisture on the specific heat capacity cpm ≈
cp, and we use the linearized form of the liquid water potential temperature.
Because θl and qt are constant we can also write for the parcel:

dθ

dz
+
lv
cp

dqs
dz

= 0. (6.7)

This will be our starting point in deriving the wet-adiabatic lapse rate. The
attentive reader will have noticed that the equation above is equivalent to stating
that the equivalent potential temperature of the parcel is constant with height:

dθe
dz

≡
dθ

dz
+
lv
cp

dq∗
dz

= 0. (6.8)

where q∗ = qt if qt < qs, and q∗ = qs for saturation, qt > qs.
To compute the vertical gradient of the saturation specific humidity we will

use the Clausius-Clapeyron equation, repeated here for convenience,

∂es
∂T

=
lves
RvT 2

. (6.9)

The saturation specific humidity is given by

qs =
εes

p+ es(ε− 1)
, (6.10)

with ε = Rd/Rv. Because qs depends on the partial water vapor saturation pres-
sure es and the mean pressure p we have

dqs =
dqs
des

des +
dqs
dp

dp =
dqs
des

des
dT

dT +
dqs
dp

dp. (6.11)
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Differentiating Eq. (6.10) with respect to es and p yields, respectively,

dqs
des

=
εp

[p+ es(ε− 1)]2
, (6.12)

dqs
dp

= −
esε

[p+ es(ε− 1)]2
. (6.13)

Substituting these two expressions, and Eq. (6.9) into Eq. (6.11) gives

dqs =
qs

p+ es(ε− 1)

(

plv
RvT 2

dT − dp

)

. (6.14)

If we rewrite Eq. (6.10) as

es =
qsp

ε+ qs(1 − ε)
(6.15)

then we can substitute es out of Eq. (6.14),

dqs =

(

1 +
1 − ε

ε
qs

)(

qslv
RvT 2

dT − qs
dp

p

)

. (6.16)

The potential temperature depends on the temperature and the pressure, thus

dθ =
dθ

dT
dT +

dθ

dp
dp =

θ

T
dT −

Rdθ

cpp
dp. (6.17)

We have now expressed dqs and dθ in terms of dT and dp. As we are interested in
the vertical derivative of the temperature dT/dz we need to evaluate dp/dz. For
this purpose we can use the gas law and if we assume that the atmosphere is in a
hydrostatic equilibrium then it follows

dp

dz
= −ρg = −

pg

RdTv
. (6.18)

We have now taken all the necessary steps to write the wet-adiabatic lapse rate as

dT

dz
= −

[

θ
T
g
cp

+ lv
cp

(1 + 1−ε
ε qs)

qsg
RdTv

θ
T + lv

cp
(1 + 1−ε

ε qs)
qslv
RvT 2

]

. (6.19)

In the literature one often finds a simplified expression. In particular, if one
approximates θ/T ≈ 1, Tv ≈ T and because in the atmosphere typically qs <
4 · 10−2 kg·kg−1 the wet-adiabatic lapse rate Γm can be expressed as

Γm = −
dT

dz
= Γd





1 + qslv
RdT

1 + l2vqs
cpRvT 2



 < Γd. (6.20)
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Figure 6.2: Lapse rates and stability. The dashed line indicates the temperature
as a function of height for an isentropically rising air parcel.

The inequality is satisfied whenever lvε > cpT . Because of the high value of lv for
water, this inequality is always valid in the atmosphere. The release of latent heat
in a saturated parcel explains why the moist adiabatic lapse rate Γm is always
smaller than the dry adiabatic lapse rate Γd. Its actual value depends strongly
on the temperature, and to a lesser extent on the mean pressure. For T = 288 K
and p = 1000 hPa we find Γm = 4.3 K/km. For lower temperatures however the
difference between Γm and Γd becomes progressively smaller.

The virtual temperature lapse rate of an isentropically rising parcel can be
computed along the same lines as the temperature lapse rate. If we for simplicity
ignore the effect of water vapor and liquid water on the vertical gradient of the
virtual temperature we can define the following stability criteria:

(−∂T/∂z) > Γd ⇐⇒ Absolute instability

Γm <(−∂T/∂z) < Γd ⇐⇒ Conditional instability

(−∂T/∂z) < Γm ⇐⇒ Absolute stability.

Absolute instability if often found near the surface when solar radiation is heating
the ground surface, or if cold air is advected over relatively warm surfaces. If
rising thermals penetrate a conditionally unstable layer they will be damped unless
there is sufficient moisture in the thermals such that saturation can occur. In the
latter case latent heat release effects will cause the thermal to remain warmer
than its surrounding environment. Any convection, either dry or wet, will be
damped if the temperature lapse rate of the atmosphere is absolutely stable. For
the development of active cumuli it is therefore necessary that the atmosphere is
conditionally unstable.
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Figure 6.3: Schematic representation of key levels in shallow cumulus clouds which
are related to condensation and buoyancy. The dashed lines represent the virtual
potential temperature for an isentropically rising air parcel. In the subcloud layer
it follows the dry adiaabatic lapse rate, but above the cloud base its virtual po-
tential temperature increases with height according to the wet-adiabat due to the
release of latent heat.
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A schematic description of some important definitions in cumulus classification
is given in Figure 6.3. Consider the full line as the virtual potential temperature of
the environment. From the gradient at the surface it is obvious that the boundary
layer is unstable. Suppose a thermal is induced by a small disturbance. When
it isentropically rises it is cooled following the dry adiabatic lapse rate indicated
by the vertical broken line. At the level of neutral buoyancy (LNB) the virtual
temperature of the thermal equals the virtual potential temperature of the en-
vironment. Because the thermal has obtained a vertical velocity (inertia) it can
penetrate slightly into the stable layer where it is gradually decelerated. When the
thermal becomes saturated cloud droplets are formed. This level defines the cloud
base and is also denoted as the lifting cloud condensation level (LCL). Because of
latent heat release the cloud parcel will follow the wet-adiabatic lapse rate above
the LCL.

From this stage there are two possible scenarios. If the lapse rate of the envi-
ronment is larger than the wet-adiabatic lapse rate, the cloud parcel will remain
negatively buoyant with respect to its environment. As a result its vertical motion
will be damped and its vertical growth will be limited. Such a cloud is called a
forced cloud. In contrast, when the lapse rate of the virtual potential tempera-
ture of the environment is less than the wet-adiabatic lapse rate, the cloud may
reach the level of free convection (LFC). At this level the cloud is exactly neutrally
buoyant with respect to its environment, but above it can gain vertical momentum
again by a positive buoyancy excess until it reaches the limit of convection (LOC).
Due to the kinetic energy the cloud has obtained it can overshoot such that the
actual cloud top is often observed above the LOC. This specific cloud type is able
to vent air into the free atmosphere. For a cumulus cloud obeying this pattern
the term active cloud is used.

It must be mentioned that this explanation is highly idealized. In reality the
properties of a thermal will not be conserved as shown in Figure 6.3. By lateral
mixing with environmental air the broken line will merely tend to bend towards
the curve representing the environmental virtual potential temperature.

6.3 Observations

Although cumulus clouds are frequently occuring, our knowledge of these clouds
is rather limited due to the relatively few aircraft measurements made. One of the
earliest series of measurements in cumulus-cloud layers was presented by Warner
(1955). He showed from aircraft penetrations through cumulus clouds that the
liquid water content is substantially lower than its adiabatic value computed from
an isentropically rising air parcel. Moreover, it was found that the ratio of the
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Figure 6.4: Example of conditionally sampled total water content values in shallow
cumuli (qt,c and their environment (left panel), and the observed in-cloud liquid
water content compared to the adiabatic lapse rate. The solid and dashed lines
indicate linear fits. The observations were collected during SCMS.

measured liquid water content to its adiabatic value decreases systematically with
height. This classic result has been confirmed by other authors, at least qualita-
tively, and is an indication that clouds continuously dilute by turbulent mixing
with their environment.

A recent field experiment during which cumuli were observed took place in
Cocoa Beech, Florida from 17 July-13 August 1995 as part of the Small Cumulus
Microphysics Study (SCMS).The aircraft data were carefully analyzed by Rodts
et al. (2003). Figure 6.4 shows an example of in-cloud total water content values
and the cloud liquid water content from aircraft observations in a cumulus field
over Florida during SCMS. The environmental total water content values gradu-
ally decrease with height as do the in-cloud values. The facts that the in-cloud
total water content is not constant with height and that the cloud liquid water
content is below the adiabatic value are in line with findings from other exper-
iments and implies that clouds mix air with their environment. This process is
usually referred to as lateral entrainment, and indicates that matters are much
more complicated than the idealized situation in which we considered a rising par-
cel that does not mix with its environment. Because the lateral mixing tends to
decrease the buoyancy excess of the cloud, it directly affects the vertical velocity
and the cloud top height. It is therefore crucial to understand the dynamics and
mixing mechanisms of cumulus clouds with their environment.

Figure 6.5 nicely illustrates the intermittent character of cumulus convection
Over a horizontal distance of about 100 km there only are five cloud spots in
which the vertical velocity field exhibits large fluctuations indicating a high level
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Figure 6.5: Example of a time series measured in a cumulus field during the
SCMS experiment which took place over Florida, August 5, 1995: (top) total
water content; (bottom) vertical velocity. The aircraft speed was about 100 ms−1,
and therefore the length of the data series is about 100 km. From Rodts (2001).
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of turbulence inside and in the near vicinity of the clouds. Farther away from
the clouds the atmosphere is nearly laminar. Notice the large upward vertical
velocities in the cloud (w > 5ms−1) and the presence of strong downdrafts.

To obtain averaged cumulus cross-section profiles four aircraft were used and
all clouds larger than 500 m were rescaled to unit length. All in-cloud measurement
points of an observed quantity were divided into 10 equidistant bins. In order to
compare the cumulus cross section with its environment the same procedure was
followed for the out-cloud regions: an equal amount of out-cloud measurement
points was taken before the aircraft flew into a cloud and after the aircraft exited
the cloud. Also these observations were rescaled to unit length and divided into 10
equidistant bins. The results are plotted on a scale ranging from -1 to 2, where the
interval [0, 1] pertains the cloudy region. Evidently, since the airplane penetrated
clouds randomly, the results should be symmetric around 0.5, provided there are
enough data points.

The results for the vertical velocity, the virtual potential temperature, the
liquid water potential temperature and the total water content of the four flights
are shown on the left of Figure 6.6. All profiles have a quite similar shape, although
the absolute values differ from flight to flight. This is due to the fact that the
boundary layer is slightly different each day. The in-cloud vertical velocities clearly
is positive and are driven by a positive virtual potential temperature excess of the
clouds. As the clouds originate from moist thermals triggered from the ground,
the clouds have a larger total water content than their environment. For θl,c, see
exercise 2.

On the right of Figure 6.6 the height effect is eliminated and the four flights
are averaged to one profile: the average value of the region before the aircraft
penetrated the cloud was subtracted from all the measured values before binning
and avaraging. The bars in the figure indicate the root-mean-square deviations
from the mean and are a measure for the turbulence; they thus do not indicate
the error in the measurements. The deviations are much higher inside the cloud
than outside the cloud, as clouds are more turbulent than the environment. The
vertical velocity in the cloud is on average between 1 and 2 ms−1. On average
the cloudy air moves upward, but just outside the cloud boundary a thin shell of
air moving downward is found. As possible explanations, the downward velocities
may be due to evaporative cooling after mixing with dry environmental air or by
a mechanical forcing constrained by the continuity equation for mass.
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Figure 6.6: Averaged in-cloud profiles of the vertical velocity, virtual potential
temperature, total water content and the liquid water potential temperature dur-
ing four different research flights, labeled RF12, RF13, RF16 and RF17 (left).
The plots on the right indicate average values of the four flights where the effect
of altitude on the measurements is eliminated. The cloud is scaled between 0 and
1. The bars denote the root-mean-square values of the individual measurements.
These bars thus do not denote an error.
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6.4 Plume models

6.4.1 Conditional sampling technique

The conditionally sampled mean value [ψ]c is defined as

[ψ]c =

∫

A IsψdA
∫

A IsdA
, (6.21)

where the integration is performed over a horizontal plane at height z and Is is
an indicator function. Is = 1 if a sampling criterion is met, and Is = 0 otherwise.
To determine properties of the cumulus clouds only, one usually samples on the
presence of liquid water (ql), although several other criteria are sometimes added.
For instance, the cloud core is defined as the part of the cloud that has both an
upward vertical velocity and a positive virtual potential temperature excess. A
summary of sampling criteria that may be applied are summarized in Table 6.1.

Indicator function Type Sampling criteria
I0 Slab mean None
I1 Updraft w > 0
I2 Cloud ql > 0
I3 Cloud updraft ql > 0 and w > 0
I4 Cloud downdraft ql > 0 and w < 0

I5 Cloud core ql > 0 and w > 0 and θv > θv

Table 6.1: Summary of sampling criteria. θv is the horizontal mean value of the
virtual potential temperature.

The sampled area fraction σ is defined as

σ =

∫

A IsdA
∫

A dA
. (6.22)

For a two-stream approximation (cloud/environment, updraft/downdraft, etcetera)
we can define the fraction of the environment σe as

σe = 1 − σ. (6.23)

By this definition the environment represents the area fraction of all points where
the applied sampling criteria are not satisfied. In the remainder of this course the
square brackets that indicate the conditionally sampled mean are, for notational
convenience, replaced by the subscripts ’c’ or ’e’ except when the operator is
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applied on a derivative. The horizontal slab-mean value is indicated by an overbar
and is given by

ψ = σψc + (1 − σ)ψe. (6.24)

The massflux Mc is defined as

Mc ≡ ρσ(wc − w) = ρσ(1 − σ)(wc − we). (6.25)

but for notational convenience one sometimes uses a definition which does not
involve the density,

Mc ≡ σ(wc − w) = σ(1 − σ)(wc − we). (6.26)

where the ’massflux’ has units ms−1. In the remainder we will use the latter
definition.

The continuity equation for mass is given by

∂Mc

∂z
= −

∂σ

∂t
+E −D, (6.27)

with E and D the lateral entrainment and detrainment rates, respectively. If
E > 0, then air is entrained and subsequently mixed from the environment into
the cloud, and vice versa for the detrainment D > 0.

If we conditionally sample the vertical flux we obtain

w′ψ′ = σ[w′ψ′]c + (1 − σ)[w′ψ′]e

= σ(1 − σ)(wc − we)(ψc − ψe) + σ[w′′ψ′′]c + (1 − σ)[w′′ψ′′]e,
(6.28)

where the latter two terms indicate the so-called sub-plume fluxes, which are due to
the contributions of perturbations with respect to the conditionally sampled mean.
The ’top-hat’ approach assumes that there are no fluctuations in the clouds or in
their environment with respect to the conditionally sampled mean values, ψ ′

c = 0
and ψ′

e = 0. In this approach, which is also called the ’massflux’ approach, the
fluctuations in the cloud, as measured by the bars in Figure 6.6, are taken to be
zero. As a consequence of this assumption the sub-plume fluxes must vanish:

σ[w′′ψ′′]c = (1 − σ)[w′′ψ′′]e = 0. (6.29)

This is a core assumption in the description of (shallow) cumulus convection. A
quick visual inspection of the time series for the vertical velocity and the total
water content shows that this is a rather idealized assumption.

In case the subplume fluxes can be neglected, then the Reynolds-averaged flux
can be simply expressed as

w′ψ′ = σ(1 − σ)(wc − we)(ψc − ψe) = Mc(ψc − ψe), (6.30)
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and the tendency of the mean ψ due to turbulent transport is then given by

∂ψ

∂t
= −

∂Mc(ψc − ψe)

∂z
+ Sψ. (6.31)

In the massflux approach one can write separate equations for mean quantities in
the cloud and its environment, respectively,

∂σψc
∂t

= −
∂Mcψc
∂z

+Eψe −Dψc + σSψ,c, (6.32)

∂(1 − σ)ψe
∂t

= +
∂Mcψe
∂z

−Eψe +Dψc + (1 − σ)Sψ,e, (6.33)

Lateral mixing

The results of the in-cloud total water content in Figure 6.4 indicate that as cumuli
rise they mix air with their environment, meaning that the lateral entrainment
rate E 6= 0. Because lateral mixing tends to decrease the buoyancy excess of
the cloud it will therefore influence the vertical velocity of the cloud. Then the
question arises how much air is mixed across the cloud boundaries?

To estimate the lateral entrainment rate we will make use of the mass flux
equations, in particular the prognostic equation for ψc Eq. (6.32) and the conti-
nuity equation, Eq. (6.27). Let us assume that the cloud fraction does not change
with time, then

∂Mc

∂z
= +E −D, (6.34)

Likewise, if we assume that the temporal change for ψc is small compared to the
terms on the right-hand-side of Eq. (6.32), and if Sψ,c = 0 we can write

−
∂Mcψc
∂z

+Eψe −Dψc = 0. (6.35)

With aid of Eq. (6.34) it is now straightforward to write and expression for ε,

E

Mc
≡ ε = −

∂ψc/∂z

(ψc − ψe)
(6.36)

by which we have defined the fractional, or normalized, entrainment ε rate. Like-
wise, the fractional detrainment rate δ ≡ D/Mc.

Let us use the results displayed in Figure 6.4 to estimate the fractional entrain-
ment rate. The linear fits for the in-cloud and environmental total water content,
qt,c and qt,e in (g/kg) are, respectively,

qt,c(z) = 20.60 − 3.34z

qt,e(z) = 20.34 − 4.75z,
(6.37)

74



with z in km. Given these expressions, we obtain qt,c − qt,e = 1.76 (g/kg) at
z = 1 km, and consequently for this height ε = 1.9 · 10−3 m−1. This number is in
agreement with other observational studies and detailed numerical simulations.

It is interesting to note that a previous version of the weather forecast model
of the ECMWF the fractional entrainment rate for shallow cumuli was about a
factor of 10 smaller than the number found in this example. In the model a too
small fractional entrainment will lead to cumuli that are too active and rise too
high. In the current version of the ECMWF model an more realistic value is used.

6.4.2 The vertical velocity equation

By a vertical integration of the cloud buoyancy between the level of free convection
(zLFC) and the limit of convection (zLOC) the convective available potential energy
(CAPE) of the atmosphere can be estimated:

CAPE =
g

θv

∫ zLOC

zLFC

(θv,c − θv)dz (6.38)

A typical velocity scale, wCAPE can be defined by assuming that all the potential
energy is converted into kinetic energy. In the literature one finds the following
definition:

wCAPE = 2 · (CAPE)1/2. (6.39)

The velocity scale is derived by neglecting pressure effects and assuming that there
is no lateral mixing.

The conditionally sampled vertical velocity equation can be derived from by
taking ψ = w in Eq. (6.32) and treating the buoyancy and the pressure gradient
terms as a source/sink contribution,

∂σwc
∂t

=
g

θv
σ(θv,c − θv) −

∂Mcwc
∂z

− σ

[

∂p

∂z

]

c

+Ewe −Dwc. (6.40)

For a steady-state solution, and if we neglect pressure effects and assume that
there is no lateral mixing than the vertical velocity equation yields the following
balance,

Mcwc = σ · CAPE ⇐⇒ wc = (CAPE)1/2, (6.41)

where we neglected the subsidence term in the definition for the mass flux (w �
wc). Obviously, this expression differs a factor of 2 from Eq. (6.39). How can
we explain this? The difference arises from a different treatment of the advection
term in the velocity equation. The definition for CAPE is based on the following
equation,

∂ui
∂t

+uj
∂ui
∂xj

= Sui
⇐⇒ (i = 3)

∂w

∂t
+u

∂w

∂x
+v

∂w

∂y
+

1

2

∂ww

∂z
= Sw. (6.42)
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By the continuity equation for mass, ∂uj/∂xj = 0, we can write the advection
term in flux form,

∂ui
∂t

+
∂uiuj
∂xj

= Sui
⇐⇒ (i = 3)

∂w

∂t
+
∂uw

∂x
+
∂vw

∂y
+
∂ww

∂z
= Sw. (6.43)

The conditionally sampled vertical velocity equation (6.40) is based on the latter
equation. In fact, the factor of 2 is compensated by the horizontal flux divergence
of the momentum transport term. In the sampled vertical velocity equation for
j ∈ {1, 2} the sampled horizontal advection term uj∂w/∂xj and the momentum
flux term, ∂(ujw)/∂xj , are expressed as a lateral entrainment and detrainment
term. Because one assumes a balance between buoyancy and the vertical velocity
term, thereby neglecting lateral mixing, this explains the factor of 2 difference.

Exercises

1. Use Eq. (6.20) to compute the wet-adiabatic lapse rate as a function of tem-
perature for the following pressures: 1000, 900 and 800 hPa.

2. Can you argue why the in-cloud liquid water content in Figure 6.6 is
lower than its environment? Hint : Use the following definitions for the mean,
θl = θ − lv/cpql and θv = θ(1 + 0.61qv − ql). Moreover, the cloud fraction is often
on the order of σ ≈ 0.1, so the mean liquid water content ql of the cloud layer is
relatively small compared to the in-cloud value. In that case, what can you say
about θl and θv? How will the in-cloud θl vertical profile look like if we assume
that the cloud does not mix with its environment?

3. Show that ρσ(wc − w) = ρσ(1 − σ)(wc − we). Hint : use the definition for
the mean [Eq. (6.24)].
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