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AbstratShallow umulus louds play an important role in the energy transport through the atmo-sphere. For general irulation models (suh as weather predition models) these loudsare important. Due to the relative small size of these louds ompared to the typial grid-size used by these models, the vertial transport by umuli is a subgrid phenomenon whihneeds parameterization. In this researh the parameterized loud�ore vertial veloityequation is studied in more detail. To this end we have examined the vertial veloitywithin shallow umulus louds using Large Eddy Simulation models (LES) to test andpossibly improve the parameterization. Besides, we also try to gain a better understand-ing of the physial meaning of this approximation.We found that desribing the vertial veloity using only the buoyany and lateral mix-ing, as is already done, an give aurate results. In this method pressure and subplumee�ets are inorporated by saling the buoyany and lateral mixing. The two ases stud-ied, BOMEX and ARM, both showed that subplume e�ets are very small and an benegleted, whilst pressure e�ets an be omplete inorporated by damping the buoyany.Unfortunately the amount of damping required to aurately desribe the vertial veloityin this way is not onstant between the ases.Examination of the frational entrainment omputed from the onditionally sampled ver-tial veloity equation and from the total spei� humidity showed a distint di�erenefor the ARM ase. This di�erene an possibly be the e�et of the subsiding shell aroundthe louds. This shell around the louds an have both a positive or a negative vertialveloity, thus either move up or down. It seems plausible that for BOMEX the vertialveloity of this shell is downward (negative), whilst it is upward (positive) for the ARMase. This di�erene has an impat on the frational entrainment and therefore possiblyon the relative damping of the buoyany aused by the pressure.
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1 IntrodutionClouds exist in many di�erent sizes and shapes. Some rain, some thunder and all just blokthe sunlight. Clouds are usually ategorised based on the height at whih they form. Theatmosphere is roughly divided into three layers. The lowest of the three is the so alled atmo-spheri boundary layer (ABL). This is the part of the atmosphere in�uened by the earth'ssurfae.Within the atmospheri boundary layer again the louds an be ategorised. This is donein two groups. Clouds that over (almost) the entire sky and louds that over 5�20 % ofthe sky. The latter are known as shallow umulus louds. Usually these louds are assoiatedwith good weather and are therefore sometimes referred to as fair�weather louds.These louds play an important role in the energy transported through the air. Thereforethey are important aspets of weather and limate foreasting. These foreasts are usuallyperformed using general irulation models (GCMs) These models annot diretly alulatethe e�ets of shallow umulus louds beause the typial size of suh a loud (< 1 km) is muhsmaller than the typial grid size of these models (∼ 10�100 km). Therefore parametrizationsare needed.In order to �nd these parametrizations the louds have to be studied in more detail. Ideally thisshould be done using measurements with airplanes. However, this is very di�ult and ostly todo, beause data is required over a long period of time at many di�erent heights in the loudlayer. An alternative are Large Eddy Simulations (LES). Multiple studies (Neggers et al.,2003; Siebesma et al., 2003) have ompared LES models with the few atmospheri measure-ments that are performed and onluded that LES models are apable of aurately omputingthe dynamis of shallow umulus louds.
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In this researh the parametrization of shallow umulus onvetion for GCMs is analysed usinga LES model. In partiular we fous on the vertial veloity of the louds. The aim is to verifywhether the urrent parametrization is apable of orretly prediting this vertial veloityand to ompare the various fores in�uening the vertial veloity within the shallow umuluslouds with the ontributions that are used in the parametrization. The vertial veloity ofthe louds is important to know in GCMs beause the frational entrainment of the louds isurrently thought to be proportional to the inverse of the vertial veloity (Gregory, 2001).To orretly use this frational entrainment a better alulation method is required for thevertial veloity in GCMs.For this researh we use the initial pro�les as measured during the Barbados Oeanographiand Meteorologial Experiment (BOMEX) (Holland and Rasmusson, 1973) and the Atmo-spheri Radiation Measurement Program (ARM) (Brown et al., 2002). The BOMEX ase isommonly used for LES models beause the measurements an be used to test the model andduring large parts of the experiment relatively stable shallow umulus louds developed. TheARM ase is, ontrary to the BOMEX ase, over land. The ARM ase is hosen beause thesurfae �uxes are very di�erent and exhibit a lear diurnal yle, making it a good ase toompare to the BOMEX ase.
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2 TheoryThis hapter gives a theoretial overview of louds. First the basis of loud formation will bedisussed, followed by some de�nitions of variables ommonly used in meteorologial researh.After this there will be an explanation of the LES model and its governing equations followedby an outline of the sampling proedures used on the LES data. Finally some de�nitions, usedin the remainder of the report, will be disussed.2.1 Cloud formationCloud formation in the atmospheri boundary layer is indiretly dominated by the sun. Thesun heats the earth's surfae whih, in turn, heats the air parels above the surfae. Theseparels of air rise in thermals through the subloud layer. If the air parel is dry, it annotoverome the relatively more buoyant layer that tops the subloud layer. However, if the par-el ontains su�ient moisture the parel an beome saturated. Above the height at whihthis happens, whih de�nes the Lifting Condensation Level (LCL), water vapour starts on-densating. The heat released during this ondensation inreases the buoyany of the parel, asan be seen in the slope of the dotted line in �gure (2.1). If buoyany inrease and the vertialveloity of the loud with respet to its environment are not high enough to reah the Level ofFree Convetion (LFC), the level where the buoyany beomes positive, the developing loudis limited between the LCL and the LFC. This is alled a fored loud.If the latent heat release is large enough to reah positive buoyany, the loud will reahthe LFC. Here the virtual temperature of the environment is smaller then that of the loudparel. Now the parel has turned into an ative loud parel and due to ondensation willgain buoyany and aelerate upwards. This proess will eventually end, either beause theparel reahes the inversion layer, where the temperature of the environment is muh largerthan that of the loud or beause mixing with the drier environment in the loud top lowersthe water ontent below the saturation level. Some parels an have su�ient upward vertialveloity to move well within the inversion layer where they will beome separated from thebulk of the loud (beoming passive louds) and eventually mix with the environment anddisappear. This all is illustrated in �gure 2.1 originally by Heus (2008).
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Figure 2.1: A shemati overview of an atmospheri boundary layer ontaining umulus louds.The full line depits the virtual potential temperature of the environment; the dashed line isthe virtual potential temperature of an (ative) loud and the thermal beneath the loud,from Heus (2008).An air parel is, obviously, not an isolated ubi entity. It will interat with its surroundingenvironment and thus, there will be exhange of energy, momentum and moisture with theenvironment both on the sides of the loud (lateral) and on the top. This mixing tends toredue the vertial veloity of the parel sine the vertial veloity of parels outside the loudis lower.
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2.2 Basi variables in meteorologial researhThe veloity of partiles an, in theory, be alulated using the so alled Navier-Stokes equa-tion. Before arriving at the Navier-Stokes equation some basi variables, ommon in meteoro-logial researh, have to be spei�ed. In meteorologial researh a few di�erent variables areused to desribe the state of the atmosphere. The �rst one is the spei� humidity (qk). Thisdimensionless variable tells something about the amount of water in the parel of air.
qk =

mk

m
where k ∈ v, l, i (2.1)Here v, l, i are respetively vapour, liquid and ie, m is the total mass: m = mv+ml+mi+mdwhere md is the mass of dry air.Now we also want to add the e�et of water vapour and liquid water on the density. Thetotal mass of a parel of air is now given by m = mv + ml + md, where we do not onsiderwater in the ie phase, beause ie does not form in shallow umulus louds. The total volumeis now given by V = Vg+Vl, where the subsript g denotes the volume oupied by the gasses.This gives for the density of the mixture:

ρ =
md +mv +ml

V
(2.2)By omparing this with the density of dry air and using (2.1) this results in:

ρd
ρ

= 1 − qv − ql (2.3)Applying the ideal gas law and rearranging it a bit �nally gives:
p = ρRmT = ρ [(1 − qv − ql)Rd + qvRv]T = ρRdTv (2.4)Where Rm is the gas onstant of the mixture, Rd the gas onstant of dry air, Rv gas onstantof water vapour and Tv the virtual temperature de�ned as:

Tv =

[

1 −

(

1 −
1

ε

)

qv − ql

]

T (2.5)Where ε = Rd

Rv
≈ 0.622 (de Roode, 2004).Using the seond law of thermodynamis:

Tds = du+ pdv ≥ 0 (2.6)Here s is the entropy, u the internal energy, v the volume and p the pressure.5



A potential temperature θ is now de�ned as:
ds = cpdlnθ (2.7)Here cp is the spei� heat apaity under onstant pressure. Combining all of this gives:

s− s0 = cp (lnθ − lnθ0) = cpln





T

T0

(

p0

p

)

Rd
cp



 (2.8)For a isentropi proess (ds = 0) and by setting T0 = θ this gives a potential temperature:
θ = T

(

p0

p

)

Rd
cp (2.9)Now ombining this potential temperature with the virtual temperature de�ned in equation(2.5) we an de�ne a virtual potential temperature:

θv = Tv

(

p0

p

)

Rd
cp (2.10)The virtual potential temperature an be seen as the virtual temperature a parel of air wouldobtain if it would be expanded or ompressed adiabatially to a standard pressure of 1000hPa. Therefore it is onserved during dry adiabati proesses (dθ = 0 and dql = 0).If we want to inorporate phase hanges we an de�ne a potential liquid water temperatureas:

θl = θe
−

Lvql
cpT ≈ θ −

Lv
cpΠ

ql (2.11)Where Π =
(

p
p0

)

Rd
cp is the Exner funtion. This variable will be onserved as long as thereis no preipitation that removes liquid water and no evaporation of raindrops in unsaturatedair.The buoyany B an be desribed by the above derived variables:

B =
g

θ0

(

θv − θv
) (2.12)Here the overbar denotes the slab averaged value and θ0 is the referene state potential tem-perature.
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2.3 LES modelNow that we know the basi instruments of meteorologial researh we an have a look at theLES model used. The atmospheri boundary layer, where shallow umulus louds develop,is dominated by turbulent eddies whose typial dominant length sales are of the order of
∼ 1 km. These turbulent motions an be alulated using the Navier-Stokes equations forinompressible �ow in a rotating referene system. Density variations an be ignored exeptin the buoyany term, so we are within the Boussinesq approximation (Cuijpers, 1994).In theory these equations an be solved, but to solve them from the smallest (Kolmogorov(∼ 1mm)) to the largest length sale (∼ 1km) would require approximately 1018 gridpoints.Far more than any urrent state of the art omputer an alulate. However, sine the �owin the atmospheri boundary layer is primarily dominated by the large eddies, it an be sim-ulated using Large-Eddy simulation models. In these models the large eddies are alulatedexpliitly, while the e�ets of small sale motions, sales smaller than the gridbox size, on theturbulent transport are parameterized.

Figure 2.2: Grid box of the LES model with the positions of the variables that desribe thegoverning equations. 7



The variables resolved by the model are u, v and w, the three diretions (x,y,z) of the veloityvetor and θl and qt, beause they are onserved for moist adiabati proesses (van Zanten,2000). Also solved is the subgrid turbulent kineti energy (e). The various variables arealulated at di�erent positions of a grid box, as shown in �gure 2.2.2.4 Governing EquationsThe equations that govern the �ow in the LES model are the onservation equations of mo-mentum (Navier-Stokes), onservation equation of mass (ontinuity equation) and the onser-vation equations of liquid water potential temperature (θl) and total water spei� humidity(qt) (van Zanten, 2000),
∂ψ

∂t
= −

∂ujψ

∂xj
−
∂u′′jψ

′′

∂xj
+ Sψ (2.13)Here the variable ψ represents either qt or θl. u′′jψ′′ denotes subgrid �ux terms. The soureterm Sψ represents proesses like radiation and preipitation.The Navier-Stokes equations for the LES model read:

∂ui
∂t

=
g

θ0

(

θv − θv
)

δi3 −
∂uiuj
∂xj

−
∂π

∂xi
−
∂τij
∂xj

(2.14)Here ui represents either u, v or w the veloity omponents in xi = (x, y, z) diretions. Use hasbeen made of the modi�ed pressure π (Deardo�, 1973). t is the time and g the gravitationalaeleration. The �rst term on the right hand side is the buoyany as desribed in equation(2.12); δij is the Kroneker delta and τij is a subgrid �ux term. The subgrid terms in equations(2.13) and (2.14) use the following parameterization:
u′′jψ

′′ = −Kψ

∂ψ

∂xj
(2.15)

τij = −Km

(

∂ui
∂xj

+
∂uj
∂xi

) (2.16)Here Km is the eddy visosity and Kψ the eddy di�usity (de Roode and Bretherton, 2003).These two parameters are evaluated using the prognosti equation for the subgrid kinetiturbulent energy (e), whih reads:
∂e

∂t
= −uj

∂e

∂xj
− τij

∂ui
∂xj

+
g

θ0
w′′θ′′v −

∂w′′e′′

∂xj
−

1

ρ0

∂w′′p′′

∂xj
− ε (2.17)Here ε is the dissipation rate. The exat representation and the formulation used to atuallyalulate all terms are very aurately desribed by Heus (2008).8



Finally the onservation equation of mass (ontinuity equation) for the LES model is theontinuity equation for an inompressible �ow (onstant density):
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.18)Every model requires, besides the governing equations, initialisation to be spei�ed. Theseinputs inlude the starting vertial pro�les of the temperature, humidity and the two horizontalwind veloity omponents. Also desriptions of the large sale forings, proesses ating on alarger sale than the domain of the LES have to be spei�ed. As a result of the use of initialpro�les the �rst few hours of simulation are usually onsidered useless due to the gradualinrease of resolved turbulene that generates the horizontal variations in temperature andhumidity, this is known as the spin-up phase. The initial pro�les for the BOMEX ase arederived from the BOMEX measurements as desribed in detail by Holland and Rasmusson(1973). While the initial pro�les for the ARM ase are derived from the ARM measurementsas desribed in detail by Brown et al. (2002).2.5 Sampling proeduresFor the numerial analysis only the loud ore data is seleted. The loud ore is de�ned asthat part of the loud where the virtual potential temperature is higher than the slab averagevirtual potential temperature, liquid water is present and there exists a vertial �ow upwards,so:

w > 0

θv > θv (2.19)
ql > 0This means that all the alulated variables must be sampled. For the sampling an all or noth-ing approah is used. So a gridpoint either satis�es the onditions or not. The onditionallysampled horizontal slab�mean values [ψ]s are then alulated using (de Roode and Bretherton,2003):

[ψ]s =

∫

A
Is ψ dA

∫

A
Is dA

(2.20)The integration is over a slab at height z and Is is one if the onditions are met, else it is zero.The fration (σs) of gridpoints that satisfy the onditions is then given by:
σs =

∫

A
Is dA

∫

A
dA

(2.21)The integrals are evaluated by summation over disrete gridpoints in the LES model.9



2.6 De�nitionsFor notational onveniene the square brakets denoting the sampling will be omitted whenonerning the vertial veloity so:
[w]s = ws (2.22)Another important part of this researh uses the mass�ux. This is de�ned as:

Ms = ρσs (ws − w) (2.23)Sine the density is often separated from the equations it is ommon to use a slightly modi�edform. Also the slab averaged vertial veloity is typially very small and thus negleted:
M ′

s = σsws (2.24)For notational simpliity the prime will be omitted from now on. The hange of the mass�uxwith height is governed by the onditionally sampled onservation of mass equation:
∂Ms

∂z
= −

∂σs
∂t

+ Ew −Dw (2.25)Here Ew and Dw are respetively the lateral entrainment and detrainment for vertial mo-mentum.
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3 Parameterization3.1 Current MethodWith all the mathematis and priniples explained it is time to look at the parameterization.It all originates from an artile written by Simpson and Wiggert (1969).The whole idea of the parameterization is based on the fat that it should be possible tomodel the behaviour of an ensemble of louds as one big loud. The basis omes from a modelof a spherial bubble rising in a oordinate system relative to the earth done by Levine (1959)where he derives an equation for the vertial veloity of the entre of mass of a bubble:
dw

dt
= B −

3

8

(

3

4
K2 + CD

)

w2

R
(3.1)Where B is the buoyany as de�ned before (2.12), K2 a mixing parameter, CD a drag oe�-ient and R the radius of the bubble. The mixing parameter and the drag oe�ient wheredetermined using lab experiments.This idea was used for not just a bubble but for a whole loud. Here R represents the radiusof a plume ap. The model used here is that of a rising plume. Here it states, as desribedby Simpson et al. (1965), that the veloity with whih the entre of mass of the plume aprises is fuelled by the buoyany while being redued by a drag term proportional to w2/R. Bytaking a oordinate system with its origin at the entre of the plume ap, whih rises at arate: w ≡ ∂z/∂t (Simpson et al., 1965) the time derivative hanges to:

dw

dt
= w

∂w

∂z
=

∂

∂z

(

w2

2

) (3.2)With this we arrive at the form as used by Simpson and Wiggert (1969):
1

2

∂w2

∂z
= B −

3

8

(

3

4
K2 + CD

)

w2

R
(3.3)Simpson and Wiggert (1969) note that due to the deployment of equation (3.2) a steady-stateis assumed.
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Using lab experiments and omparison between model data and measurements Simpson and Wiggert(1969) made a few hanges to equation (3.3). They noted that the drag term, introdued be-ause the vertial momentum was redued by a larger fator than the entrainment ouldaount for, ould better be desribed by reduing the buoyany term with a virtual massterm. This introdued another onstant into the equation instead of CD. Also they used thefollowing entrainment relation:
1

M

∂M

∂z
=

9

32

K2

R
= ε (3.4)Note here that this is di�erent from the urrent idea that the mass�ux is equal to the entrain-ment minus the detrainment (2.25). At the time of Simpson and Wiggert (1969) detrainmentwas not onsidered and the vertial hange in mass�ux was simply proportional to the en-trainment.Using above formula to add the frational entrainment gives the �nal form as used for ex-ample by Siebesma et al. (2003):

1

2

∂w 2
s

∂z
= −bεw 2

s + aB (3.5)Here a and b are onstants and the s subsripts have been added to denote the sampled values,orresponding with the notation used so far. It should be noted that the onstant b was notadded by Simpson and Wiggert (1969) but is added later. Table (3.1) gives an overview ofvalues for the onstants a and b suggested by di�erent authors.Table 3.1: Current values suggested for the parameterization from di�erent authors.Author a bSimpson and Wiggert (1969) 2/3 1Simpsonx 2/3 2Gregory (2001) 1/3 3Gregory* 1/3 2* as used in Siebesma et al. (2003), from now on referred to as Gregory 2.x as used in Siebesma et al. (2003) and Gregory (2001), from now on referred to as Simpson 2.For the onstants Simpson and Wiggert (1969) thus suggested:
a =

2

3
and b = 1 (3.6)
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As mentioned above the onstant a is based on a virtual mass oe�ient and using lab exper-iments was found by Simpson and Wiggert (1969) to amount to the fator a = 2

3
. Gregory(2001) used a = 2/3 and b = 2, whih di�ers with a fator 2 ompared to Simpson and Wiggert(1969). This an possibly be attributed to using both the drag oe�ient and the virtualmass, instead of only the virtual mass as suggested by Simpson and Wiggert (1969). Thevalues found by Gregory (2001) are also the ones used by Siebesma et al. (2003).Gregory (2001) then used a somewhat di�erent model, beause he has a di�erent suggestionfor the frational entrainment than the way it is suggested by Simpson and Wiggert (1969).He therefore also uses a di�erent approah for the sampled slab averaged vertial veloity:

1

2

∂w2
s

∂z
=

1

6
B −

1

2
δw2

s − εw2

s (3.7)We an rewrite this using the mass�ux (2.25) if we assume that the loud over is onstant intime:
1

σsws

∂σsws
∂z

= ε− δ (3.8)
1

ws

∂ws
∂z

+
1

σs

∂σs
∂z

= ε− δ (3.9)Now we also have to assume that the loud over is onstant with height, whih allows us toeliminate the frational detrainment from equation (3.7):
δ = ε−

1

ws

∂ws
∂z

1

2

∂w2
s

∂z
=

1

6
B −

1

2

(

ε−
1

ws

∂ws
∂z

)

w2

s − εw2

s

=
1

6
B +

1

4

∂w2
s

∂z
−

3

2
εw2

s (3.10)
=

1

3
B − 3εw2

sIn the third step use has been made of the hain rule to bring the ws inside the deriva-tive. Then rearranging and ultimately multiplying by 2 gives a result omparable with theparameterization (3.5). So Gregory (2001) uses the following values for the onstants:
a =

1

3
and b = 3 (3.11)This is di�erent than those found by Siebesma et al. (2003) when analysing the artile byGregory (2001), he �nds a value of b = 2. The di�erene might be aused by the fat thatwe have now assumed that the loud over is onstant with height, whih might be a poorapproximation. 13



There are three di�erent physial interpretations for the parameterization given by multi-ple authors. The �rst interpretation is given by Simpson and Wiggert (1969). They say thatthe pressure indues a virtual additional mass that the buoyany transports upwards, thusdownsaling the buoyany.The seond interpretation omes from both Gregory (2001) and Neggers et al. (2003). Theystate that saling of the mixing term (b) an be interpreted as integrating the e�et of pres-sure perturbations, while the redued buoyany (a) is due to the loss of potential energy tosub-plume turbulene.The last interpretation omes from Siebesma et al. (2007). He also has the same parame-terization equation (3.5), but he expresses the e�ets of the pressure in terms of the vertialveloity variane as:
∂p

∂z
≈
∂µw 2

s

∂z
(3.12)Where µ is a onstant taken to be µ = 0.15. Using this he arrives at:

1

2
(1 − 2µ)

∂w 2
s

∂z
= −bεw 2

s +B (3.13)This is the same result as equation (3.5) but the pressure term is inorporated into the vertialveloity variane instead of the buoyany. The di�erent values found by the various authorsare summarised above in table 3.1.
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3.2 Conditionally sampled LES vertial veloity equationTo better understand the budgets that are absorbed in the onstants, the equations governingthe LES model (2.13, 2.14) have to be rewritten into something similar to the parameterization.First using a mass-�ux approah, as made by Siebesma and Cuijpers (1995), the onditionallysampled vertial veloity an be expressed as (de Roode and Bretherton, 2003):
∂σsws
∂t

= −
∂Msws
∂z

−
∂σs [w′′w′′]s

∂z
+Ewwe −Dwws + σs

g

θ0

(

θv,s − θv
)

− σs

[

∂π

∂z

]

s

(3.14)Here Ew and Dw are respetively the lateral entrainment and detrainment for vertial mo-mentum, w′′ the deviations from the average in�loud vertial veloity and Ms is the mass�ux. Comparing this with the original equation (2.14) diretly shows the relation for thelateral entrainment and detrainment and the e�et of moving the square outside the samplingoperator:
Ewwe −Dwws = −σs

[

∂τij
∂xj

]

s

− σs

[

∂uw

∂x

]

s

− σs

[

∂vw

∂y

]

s

(3.15)
[

w2
]

s
= w2

s +
[

w′′w′′
] (3.16)Here the assumption is made that all e�ets along the boundary an be modelled as an in-oming and an outgoing term both proportional to the �eld, the entrainment and detrainment(Siebesma, 1998). Using this, the ontinuity equation for the mass �ux (2.25) and the hainrule of di�erentiation we an rewrite equation (3.14):

σs
∂ws
∂t

+ws
∂σs
∂t

= −σs
∂w2

s

∂z
− w2

s

∂σs
∂z

−
∂σs [w′′w′′]s

∂z
− Ew (ws − we)

+ws
∂Ms

∂z
+ ws

∂σs
∂t

+ σ
g

θ0

(

θv,s − θv
)

− σs

[

∂π

∂z

]

s

(3.17)Applying the hain rule would normally also require the use of Leibniz' rule (Young, 1988) andwould thus give rise to a boundary term. Due to the appliation of the mass �ux approah,using an entrainment and detrainment, all terms along the boundary are already absorbedwithin the entrainment and detrainment. Now again using the hain rule:
ws
∂Ms

∂z
= w2

s

∂σs
∂z

+
σs
2

∂w2
s

∂z
(3.18)We approximate the entrainment as follows:

Ew (ws − we) = εwσsws (ws − we) ≈ εwσsw
2

s (3.19)where use has been made of the fat that the vertial veloity of the environment is muhsmaller than that of the loud.
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Combining it all gives:
∂ws
∂t

= −
1

2

∂w2
s

∂z
−

1

σs

∂σs [w′′w′′]s
∂z

− εw2

s +
g

θ0

(

θv,s − θv
)

−

[

∂π

∂z

]

s

(3.20)A similar approah as done above has been done by Gregory (2001). The additional densityterm he has, was omitted here beause we are within the Boussinesq approah. With this laststep equation (3.20) has a similar form as the parameterization (3.5):
1

2

∂w2
s

∂z
=

g

θ0

(

θv,s − θv
)

− εww
2

s −
∂ws
∂t

−
1

σs

∂σs [w′′w′′]s
∂z

−

[

∂π

∂z

]

s

(3.21)From this it is lear that the last three terms on the right-hand side are inorporated into theonstant (a), in the ase of Simpson and Wiggert (1969), or the onstants (a and b), in thease of Siebesma et al. (2003) and Gregory (2001), of the parameterization (3.5).What is left is one unknown, being the frational entrainment εw. The frational entrain-ment is often diagnosed using the ontinuity equation for a salar:
∂σψs
∂t

= −
∂Msψs
∂t

+ Eψe −Dψs (3.22)When assuming a steady�state solution this beomes (Neggers et al., 2003):
εψ = −

(

ψs − ψ
)−1 ∂ψs

∂z
(3.23)Here ψ an either be the total spei� humidity qt or the liquid�water potential temperature

θl. When applying the parameterization one ommonly assumes:
εw = εqt (3.24)Unless otherwise stated all results presented are based on this assumption.
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4 ResultsFor both ases the various budget terms as desribed by formula (3.21) are alulated usingthe LES model, while the entrainment will be alulated using the qt budget (3.23) In thefollowing setion these budgets will be analysed for both the BOMEX and ARM ase. Forboth ases di�erent possibilities for the onstants of the parameterization will be disussedresulting in a suggestion for these parameters for the two ases. All �gures ontaining di�erentbudgets or other variables of the loud ore are plotted on a axis whih ontains the heightlevels where there exists a loud ore. At loud base and even more so at the top the budgetsterms an show strange behaviour, like extraordinary high or low values. For these areas theloud ore over is so low that the numeri sampling an no longer be used to auratelydesribe the situation.4.1 BOMEX aseIn �gure 4.1 the budget terms in the loud layer are displayed for the 8th hour of simulation,these results are fairly representative for the 3rd till the 8th hour. The �rst two hours areomitted beause the system is then still in the startup phase. From this data it is learthat the buoyany is the foring term of the equation. However, the lateral mixing term(entrainment term) and the pressure term are both negative and of roughly equal size. Thissuggests a possibility for parameterization of the pressure term using the lateral mixing term.From these observations saling the lateral mixing to aount for the pressure term seemspossible, at least for the lower part of the loud.
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Figure 4.1: Budgets of the vertial veloity equation (3.21) for the 8th hour of simulation forthe BOMEX ase.The subplume term however does not seem to have any parallel with any of the other terms.It is, for instane, the only term that hanges sign halfway the loud ore layer. It is also learthat the time dependene is negligible small. Unfortunately this means that there is no learonnetion between the subplume term and either the buoyany or gradient of the vertialveloity squared. Based on this data there seems to be no apparent reason to approximatethe subplume term by saling another term. However, the subplume term is not very large.It gives only a small ontribution and it might be possible to neglet it.So far there seems to be a onnetion between the pressure and the entrainment term. Fromthe graph in �gure 4.1 this even seems to diretly suggest a value for the onstant b = 2. Thisis also what urrently is used in various GCMs (table 3.1). Negleting the subplume termwould give for the other onstant simply a = 1.We want to hek the hypothesis and also ompare the results found with the values sug-gested by other authors (table 3.1). Table (4.1) gives an overview of the various values forthe onstants (a and b) as suggested by di�erent authors and the values based on the LESbudgets found during this researh. 18



Table 4.1: Suggested values for the onstants of the parameterization based on literature andthe BOMEX and ARM ase resultsName a bSimpson 2/3 1Simpson 2 2/3 2Gregory 1/3 3Gregory 2 1/3 2Result LES BOMEX 1 2Result LES ARM 1/3 1The values linked to authors are the same as found in table (3.1).To hek the hypothesis we alulate 1

2

∂w2
s

∂z
using the di�erent onstants a and b, as shown intable (4.1) using the buoyany, frational entrainment (εqt) and vertial veloity as alulatedby the LES model and ompare this with the results from the LES model.
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Figure 4.2: Comparison of the derivative of the vertial veloity squared alulated using theonstants with the one alulated by the LES model for the 8th hour of simulation for theBOMEX ase. The values for the onstants belonging to the di�erent authors an be foundin table 4.1. 19



Figure 4.2 shows that the above proposed values for a and b give a muh better result. How-ever, the values suggested by Simpson and Wiggert (1969) (a = 2/3 and b = 1) give an evenbetter solution.Besides from the budgets the resolved vertial veloity squared is ompared with the ver-tial veloity squared evaluated using the parameterization. The di�erential equation hasbeen evaluated using the buoyany and entrainment alulated by the LES model, as follows:
ψ = w2

s

ψ[1] = 0

1

2

ψ[n] − ψ[n− 1]

δz
= aB[n] − bεqtψ[n] (4.1)Here n denotes the height level whih orresponds to a height of 40(n − 1) meters sine themodel alulates the buoyany and qt values every 40 meters. We use this system to solve thevertial veloity squared for both the urrently used and the suggested parameters derivedfrom the LES results. The starting value is hosen to be zero beause there is no loud orepresent at the surfae; loud base is around 600 [m℄. The results are displayed in �gure 4.3.
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Figure 4.3: Comparison of the vertial veloity squared for the urrent and suggested param-eter values for the 8th hour for the BOMEX ase. The values for the onstants belonging tothe di�erent authors an be found in table 4.1.20



The vertial veloity squared is very lose to the vertial veloity squared as alulated by theLES model for the suggested onstants based on the LES data for the BOMEX ase. Appar-ently a = 1 and b = 2 predits almost the same vertial veloity as the onstants a = 2/3and b = 1. Both solutions are very lose to the LES data. Both solutions would give theorret results for the vertial veloity squared, but based on the budgets (�gure 4.2) takingthe pressure e�et into aount through the prefator a (saling the buoyany) is preferable.This is also what was found by Simpson and Wiggert (1969).To further verify the �ndings and possibly �nd even better values an optimisation has beendone with the data. We keep the onstant b = 1, beause both the BOMEX ase and theARM ase, desribed in the next setion, seem to support this theory. Here should be notedthat table 4.1 gives another value based on the result of the LES BOMEX, but this is theresult from observation of the budgets of the BOMEX ase (�gure 4.1). The omparisons ofthe gradient of the onditionally sampled vertial veloity squared (�gure 4.2) and the on-ditionally sampled vertial veloity squared (�gure 4.3) showed that keeping b = 1 gives aneven better approximation.For this optimisation the vertial veloity squared is alulated using the same proedureas above (4.1) (now referred to as w2
par) for di�erent values of a. The optimum value for theonstant a is determined as the value for whih the following is as small as possible:
cloudtop

∑

cloudbase

∣

∣w2

LES − w2

par

∣

∣ (4.2)Cloud base and loud top are estimated based on the data, but do not need to be very preise.
wLES is the vertial veloity as alulated by the LES model.This approah gives an optimum value for a = 2/3 like found by Simpson and Wiggert (1969)and also found above. There is hardly any di�erene between the various hours of simulationand this further supports the values found by Simpson and Wiggert (1969).
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Figure 4.4: Frational entrainment alulated using either the remainder of equation (3.21)(εw)or the qt budget (3.23)(εqt) for the 8th hour of simulation for the BOMEX ase.It should be noted that the frational entrainment is alulated using qt (3.23). When derivingthe frational entrainment diretly from equation (3.21), thus alulating εw without theassumption that it is equal to εqt . Using it to exatly lose the equation we obtain a slightlydi�erent frational entrainment and thus di�erent results for the vertial veloity as alulatedabove. Figure 4.4 shows the frational entrainment for the 8th hour using the two methodsof alulation. The di�erenes are relatively small, making the entrainment model with qt(3.23) a good approximation. For the earlier hours the di�erene is either equal or smallerthan shown for the 8th hour.
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4.2 ARM aseFor the ARM ase the 7th till the 12th hour are used. Before the 7th hour almost no loudsare observed, while after 12 hours of simulation the budgets will remain the same for a fewhours, before hanging again due to the diurnal yle. This last period of the ARM ase isnot analysed and may yield other results then presented here. In the �gures only the 9th and
12th hour are displayed. The 7th and 8th hour are roughly similar to the 9th hour. The termsfor the hours between the 9th and the 12th hour show a gradual hange from their behaviourin the 9th hour to that observed in the 12th hour. The budgets are learly di�erent from thoseobserved at the BOMEX ase. From the budgets it is lear (�gures 4.5 and 4.6) that thepressure term almost ompletely balanes the buoyany and is not similar to the entrainmentterm as found in the BOMEX ase. Based on this ase it would be more logial to sale thebuoyany to aount for the pressure term, while again the subplume term seems su�ientlysmall to neglet it.
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Figure 4.7: Comparison of the vertial veloity squared for the urrent and suggested param-eter values for the 9th (top) and the 12th (bottom) hour for the ARM ase. The values for theonstants belonging to the di�erent authors an be found in table 4.1.25



A big di�erene is observed in the frational entrainment. The frational entrainment alu-lated through the qt budget is roughly similar to that observed in the BOMEX ase, however,it is ompletely di�erent from the frational entrainment alulated from the remainder ofequation (3.21) (�gures 4.8 and 4.9). The entrainment alulated from the remainder, thusthe entrainment that would balane equation (3.21), is negative over the entire loud.
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Figure 4.8: Frational entrainment alulated using either the remainder of equation (3.21) orthe qt budget (3.23) for the 9th hour of simulation for the ARM ase.
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Figure 4.9: Frational entrainment alulated using either the remainder of equation (3.21) orthe qt budget (3.23) for the 12th hour of simulation for the ARM ase.An explanation for the negative values of εw might be found in the subsiding shell. As shownby Heus (2008) the subsiding shell surrounding eah loud has a signi�ant negative mass�uxompared to the upward mass�ux within the loud. For smaller louds the relative downwardmass�ux of the shell, ompared to the upward mass�ux in the loud, is larger. The subsidingshell obviously in�uenes the mass�ux and this e�et sales with the loud radius.There an be two situations. In the �rst situation the area around the loud ore has anegative vertial veloity and thus moves downward. The area around the loud ore an alsohave a positive vertial veloity and thus move upward. Beause the budget term in equation(3.14) ontains the produts Ewwe − Dwws and for this the assumption is made that thevertial veloity of the environment is negative, when the vertial veloity of the environmentin the viinity of the loud is positive this ould result in an negative frational entrainment(εw). This ould explain the di�erene between the two frational entrainments (εw and εqt).The two situations are skethed in �gure (4.10).
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Figure 4.10: Illustration of the two possible situations with a subsiding shell around the loudore. The arrows indiate the diretion of the vertial veloity.Heus (2008) showed that there is a lear subsiding shell around the louds for the BOMEXase and within the shell the vertial veloity is negative. It an be argued that the shellsurrounding the loud ore for the ARM ase has a positive vertial veloity whih gives riseto a negative frational entrainment making the assumption εw ≈ εqt false. This would have aobvious impat on the various terms of the parameterization and thus in�uene the onstants.
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5 ConlusionA Comparison of all the onditionally sampled vertial veloity budgets from both ases showsthat the leading fore is the buoyany, losely followed by both the lateral mixing and the pres-sure term. For the BOMEX ase the pressure term is almost equal to the lateral mixing term,so the pressure term an easily be parameterized by saling the lateral mixing with a fatorof two. By resolving the vertial veloity squared from the parameterization and omparingit with the LES alulated vertial veloity squared, showed that saling the lateral mixingterm aurately predits the vertial veloity. However, it is also possible to aount for thepressure by saling the buoyany, whih gives even better results, mainly when omparingthe saled budgets diretly with the gradient of the vertial veloity squared, and is more inagreement with the ARM ase.The ARM ase shows a di�erent behaviour, here the pressure term is muh larger than thelateral mixing term. The pressure term for the ARM ase has the same (opposed) shape asthe buoyany term. Saling the buoyany to aount for the pressure term gives an auratepredition of the vertial veloity squared.The onstants with whih the buoyany is saled for both ases is di�erent. Beause thepressure term in the ARM ase is muh larger ompared to the buoyany than in the BOMEXase, the saling for the two ases is shown in �gure 5.1.Table 5.1: The best values for the onstants a and b for the BOMEX and ARM ases for theparameterization (3.5). Case a bBOMEX 2/3 1ARM 1/3 1From these results it seems that the pressure term, that tends to damp the upward vertialveloity of a parel of loudy air, does this redution with a fator of the buoyany and to-gether with the lateral mixing they are the main priniples that desribe the vertial veloityof a loud parel. Sine the fator with whih the pressure redues the buoyany is di�erentfor both ases, there is probably a dependeny on some other parameter. The subplume termis so small that it an be negleted, rather then parameterized.
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From the frational entrainment alulated for both ases it seems that there is a major dif-ferene between the frational entrainment alulated using a qt budget and the entrainmentneeded to lose the mass�ux based variant of the governing equations (3.21) for the ARM ase,while there is almost no di�erene for the BOMEX ase. An explanation for this an perhapsbe found in the subsiding shell surrounding louds. Heus (2008) showed that the subsidingshell an have a signi�ant in�uene on the mass�ux. Within a subsiding shell it is possiblethat the vertial veloity is upward. In this ase the frational entrainment would be negativeas is also seen in the LES data from the ARM ase.The researh showed for both the ARM and BOMEX ases that it is possible to auratelydesribe the vertial veloity with the parameterization urrently used, but the onstants aredi�erent. Partly both from the urrently used ones as from eah other. Still saling the buoy-any with a onstant is possible although a measure or ondition for the amount should befound.A last note should be made to the fat that omparison of the vertial veloity squaredresolved using the parameterization for di�erent onstants showed that hoosing a = 1 and
b = 2 results in the same vertial veloity squared as a = 2/3 and b = 1. At this point thereseems to be no reason why this should be the ase, however both ases showed this samerelation and perhaps there is a balane somewhere between these two onstants that ould beused in the future.
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