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Abstract

Shallow cumulus clouds play an important role in the energy transport through the atmo-
sphere. For general circulation models (such as weather prediction models) these clouds
are important. Due to the relative small size of these clouds compared to the typical grid-
size used by these models, the vertical transport by cumuli is a subgrid phenomenon which
needs parameterization. In this research the parameterized cloud—core vertical velocity
equation is studied in more detail. To this end we have examined the vertical velocity
within shallow cumulus clouds using Large Eddy Simulation models (LES) to test and
possibly improve the parameterization. Besides, we also try to gain a better understand-

ing of the physical meaning of this approximation.

We found that describing the vertical velocity using only the buoyancy and lateral mix-
ing, as is already done, can give accurate results. In this method pressure and subplume
effects are incorporated by scaling the buoyancy and lateral mixing. The two cases stud-
ied, BOMEX and ARM, both showed that subplume effects are very small and can be
neglected, whilst pressure effects can be complete incorporated by damping the buoyancy.
Unfortunately the amount of damping required to accurately describe the vertical velocity

in this way is not constant between the cases.

Examination of the fractional entrainment computed from the conditionally sampled ver-
tical velocity equation and from the total specific humidity showed a distinct difference
for the ARM case. This difference can possibly be the effect of the subsiding shell around
the clouds. This shell around the clouds can have both a positive or a negative vertical
velocity, thus either move up or down. It seems plausible that for BOMEX the vertical
velocity of this shell is downward (negative), whilst it is upward (positive) for the ARM
case. This difference has an impact on the fractional entrainment and therefore possibly

on the relative damping of the buoyancy caused by the pressure.
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1 Introduction

Clouds exist in many different sizes and shapes. Some rain, some thunder and all just block
the sunlight. Clouds are usually categorised based on the height at which they form. The
atmosphere is roughly divided into three layers. The lowest of the three is the so called atmo-
spheric boundary layer (ABL). This is the part of the atmosphere influenced by the earth’s

surface.

Within the atmospheric boundary layer again the clouds can be categorised. This is done
in two groups. Clouds that cover (almost) the entire sky and clouds that cover 5-20 % of
the sky. The latter are known as shallow cumulus clouds. Usually these clouds are associated

with good weather and are therefore sometimes referred to as fair-weather clouds.

These clouds play an important role in the energy transported through the air. Therefore
they are important aspects of weather and climate forecasting. These forecasts are usually
performed using general circulation models (GCMs) These models cannot directly calculate
the effects of shallow cumulus clouds because the typical size of such a cloud (< 1 km) is much
smaller than the typical grid size of these models (~ 10-100 km). Therefore parametrizations

are needed.

In order to find these parametrizations the clouds have to be studied in more detail. Ideally this
should be done using measurements with airplanes. However, this is very difficult and costly to
do, because data is required over a long period of time at many different heights in the cloud
layer. An alternative are Large Eddy Simulations (LES). Multiple studies

|2_0Dd |S_|_Qb_esm_a._et_a.]_] |21]_0;4 have compared LES models with the few atmospheric measure-

ments that are performed and concluded that LES models are capable of accurately computing

the dynamics of shallow cumulus clouds.



In this research the parametrization of shallow cumulus convection for GCMs is analysed using
a LES model. In particular we focus on the vertical velocity of the clouds. The aim is to verify
whether the current parametrization is capable of correctly predicting this vertical velocity
and to compare the various forces influencing the vertical velocity within the shallow cumulus
clouds with the contributions that are used in the parametrization. The vertical velocity of
the clouds is important to know in GCMs because the fractional entrainment of the clouds is
currently thought to be proportional to the inverse of the vertical velocity @, ).
To correctly use this fractional entrainment a better calculation method is required for the

vertical velocity in GCMs.

For this research we use the initial profiles as measured during the Barbados Oceanographic

and Meteorological Experiment (BOMEX) (I]io.]la.n_d_a.n_d_B_a.smussn.d, |].9_7_C‘i) and the Atmo-

spheric Radiation Measurement Program (ARM) (IBmm_e_t_a.L], |2_0_[ld) The BOMEX case is

commonly used for LES models because the measurements can be used to test the model and

during large parts of the experiment relatively stable shallow cumulus clouds developed. The
ARM case is, contrary to the BOMEX case, over land. The ARM case is chosen because the
surface fluxes are very different and exhibit a clear diurnal cycle, making it a good case to

compare to the BOMEX case.



2 Theory

This chapter gives a theoretical overview of clouds. First the basis of cloud formation will be
discussed, followed by some definitions of variables commonly used in meteorological research.
After this there will be an explanation of the LES model and its governing equations followed
by an outline of the sampling procedures used on the LES data. Finally some definitions, used

in the remainder of the report, will be discussed.

2.1 Cloud formation

Cloud formation in the atmospheric boundary layer is indirectly dominated by the sun. The
sun heats the earth’s surface which, in turn, heats the air parcels above the surface. These
parcels of air rise in thermals through the subcloud layer. If the air parcel is dry, it cannot
overcome the relatively more buoyant layer that tops the subcloud layer. However, if the par-
cel contains sufficient moisture the parcel can become saturated. Above the height at which
this happens, which defines the Lifting Condensation Level (LCL), water vapour starts con-
densating. The heat released during this condensation increases the buoyancy of the parcel, as
can be seen in the slope of the dotted line in figure ([Z1I). If buoyancy increase and the vertical
velocity of the cloud with respect to its environment are not high enough to reach the Level of
Free Convection (LFC), the level where the buoyancy becomes positive, the developing cloud
is limited between the LCL and the LFC. This is called a forced cloud.

If the latent heat release is large enough to reach positive buoyancy, the cloud will reach
the LFC. Here the virtual temperature of the environment is smaller then that of the cloud
parcel. Now the parcel has turned into an active cloud parcel and due to condensation will
gain buoyancy and accelerate upwards. This process will eventually end, either because the
parcel reaches the inversion layer, where the temperature of the environment is much larger
than that of the cloud or because mixing with the drier environment in the cloud top lowers
the water content below the saturation level. Some parcels can have sufficient upward vertical
velocity to move well within the inversion layer where they will become separated from the
bulk of the cloud (becoming passive clouds) and eventualtﬁix with the environment and

boos).

disappear. This all is illustrated in figure X1 originally by
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Figure 2.1: A schematic overview of an atmospheric boundary layer containing cumulus clouds.
The full line depicts the virtual potential temperature of the environment; the dashed line is
the virtual Eotential temperature of an (active) cloud and the thermal beneath the cloud,

).

from

An air parcel is, obviously, not an isolated cubic entity. It will interact with its surrounding
environment and thus, there will be exchange of energy, momentum and moisture with the
environment both on the sides of the cloud (lateral) and on the top. This mixing tends to
reduce the vertical velocity of the parcel since the vertical velocity of parcels outside the cloud

is lower.



2.2 Basic variables in meteorological research

The velocity of particles can, in theory, be calculated using the so called Navier-Stokes equa-
tion. Before arriving at the Navier-Stokes equation some basic variables, common in meteoro-
logical research, have to be specified. In meteorological research a few different variables are
used to describe the state of the atmosphere. The first one is the specific humidity (g). This

dimensionless variable tells something about the amount of water in the parcel of air.

qr = Mk where k € v,1,1 (2.1)
m

Here v, [, 7 are respectively vapour, liquid and ice, m is the total mass: m = m,+m;+m; +my

where my is the mass of dry air.

Now we also want to add the effect of water vapour and liquid water on the density. The
total mass of a parcel of air is now given by m = m, + m; + my, where we do not consider
water in the ice phase, because ice does not form in shallow cumulus clouds. The total volume
is now given by V' =V, + V), where the subscript g denotes the volume occupied by the gasses.
This gives for the density of the mixture:

Mg+ my + 1My

2.2
> (2.2
By comparing this with the density of dry air and using (ZI) this results in:
ﬁzl—qv—ql (2.3)
p
Applying the ideal gas law and rearranging it a bit finally gives:
p=pR,T =p[(1 —q,—q)Rqg+ qRy] T = pR4T, (2.4)

Where R,, is the gas constant of the mixture, Ry the gas constant of dry air, R, gas constant

of water vapour and T, the virtual temperature defined as:

Ty = [1 - <1 - %) Go — qz] T (2.5)

Where & = 4 ~ 0.622 (Id_ugm_dfl |2£m_4).

Using the second law of thermodynamics:

Tds = du + pdv > 0 (2.6)

Here s is the entropy, u the internal energy, v the volume and p the pressure.



A potential temperature 6 is now defined as:
ds = cpdinf (2.7)

Here ¢, is the specific heat capacity under constant pressure. Combining all of this gives:

Ry

T c
s—50 = c,(Inf—Inby) = cyln ?O<%> ’ (2.8)

For a isentropic process (ds = 0) and by setting Ty = 0 this gives a potential temperature:

Rq

0=T <@> - (2.9)

p

Now combining this potential temperature with the virtual temperature defined in equation

E3) we can define a virtual potential temperature:

Rq

0, =T, <@> v (2.10)
p

The virtual potential temperature can be seen as the virtual temperature a parcel of air would
obtain if it would be expanded or compressed adiabatically to a standard pressure of 1000

hPa. Therefore it is conserved during dry adiabatic processes (df = 0 and dg; = 0).

If we want to incorporate phase changes we can define a potential liquid water temperature

as:

a (2.11)

d
Where II = <p£0> P is the Exner function. This variable will be conserved as long as there
is no precipitation that removes liquid water and no evaporation of raindrops in unsaturated

air.

The buoyancy B can be described by the above derived variables:

g _
B = 2 (6, — 0,) (2.12)

Here the overbar denotes the slab averaged value and 6 is the reference state potential tem-

perature.



2.3 LES model

Now that we know the basic instruments of meteorological research we can have a look at the
LES model used. The atmospheric boundary layer, where shallow cumulus clouds develop,
is dominated by turbulent eddies whose typical dominant length scales are of the order of
~ 1 km. These turbulent motions can be calculated using the Navier-Stokes equations for

incompressible flow in a rotating reference system. Density variations can be ignored except
(Cuer] hosd

in the buoyancy term, so we are within the Boussinesq approximation

In theory these equations can be solved, but to solve them from the smallest (Kolmogorov
(~ Imm)) to the largest length scale (~ 1km) would require approximately 10'® gridpoints.
Far more than any current state of the art computer can calculate. However, since the flow
in the atmospheric boundary layer is primarily dominated by the large eddies, it can be sim-
ulated using Large-Eddy simulation models. In these models the large eddies are calculated
explicitly, while the effects of small scale motions, scales smaller than the gridbox size, on the

turbulent transport are parameterized.

wili k1)
Ev(i,jH,k
- —:.-— ----------------- -
uli, jk) . uli+1,j.k
vil, LK) ,
.
wili ] k)

® 6.q.e()k)

Figure 2.2: Grid box of the LES model with the positions of the variables that describe the

governing equations.



The variables resolved by the model are u, v and w, the three directions (x,y,z) of the velocit
vector and 0; and ¢;, because they are conserved for moist adiabatic processes (m,
). Also solved is the subgrid turbulent kinetic energy (e). The various variables are

calculated at different positions of a grid box, as shown in figure 222

2.4 Governing Equations

The equations that govern the flow in the LES model are the conservation equations of mo-
mentum (Navier-Stokes), conservation equation of mass (continuity equation) and the conser-

vation equations of liquid water potential temperature (6;) and total water specific humidity

(¢r) (van_Zanterl, R00d),

M duyp  Ouy”
61& - Oxj 8$j

+ S, (2.13)

Here the variable ¢ represents either ¢; or 0;. u;-’w” denotes subgrid flux terms. The source

term Sy, represents processes like radiation and precipitation.

The Navier-Stokes equations for the LES model read:

8’[14@' o g 2N s 8u,~u]~ or aTij
ot N 90 (01; (91;) 523 8$j 63:2 al'j

(2.14)

Here u; represents either u, v or w the velocity components in z; = (x,y, z) directions. Use has
been made of the modified pressure 7 (m, ). t is the time and g the gravitational
acceleration. The first term on the right hand side is the buoyancy as described in equation
EZT2); 6;5 is the Kronecker delta and 745 is a subgrid flux term. The subgrid terms in equations

E&13) and ZI4) use the following parameterization:

T —K,p% (2.15)
J
ou; Ou;
7 i

Here K, is the eddy viscosity and Ky the eddy diffusity (Id.(LB.Q.Q_d.(Lﬂ.D.d_BL&thﬂLth, |2.0.0d)

These two parameters are evaluated using the prognostic equation for the subgrid kinetic

turbulent energy (e), which reads:

Oe Oe ou;  g——- Ouw"e” 1 ouw"p”
ge _ .06 0% | 9 = _ 2.17
ot 4 8$j Tij al'j * 90w v 8$j £0 al'j c ( )

Here ¢ is the dissipation rate. The exact representation and the formulation used to actually

calculate all terms are very accurately described by ).



Finally the conservation equation of mass (continuity equation) for the LES model is the
continuity equation for an incompressible flow (constant density):
%%—2—2%—%—2}:0 (2.18)
Every model requires, besides the governing equations, initialisation to be specified. These
inputs include the starting vertical profiles of the temperature, humidity and the two horizontal
wind velocity components. Also descriptions of the large scale forcings, processes acting on a
larger scale than the domain of the LES have to be specified. As a result of the use of initial
profiles the first few hours of simulation are usually considered useless due to the gradual
increase of resolved turbulence that generates the horizontal variations in temperature and
humidity, this is known as the spin-up phase. The initial profiles for the BOMEX case are
derived from the BOMEX measurements as described in detail by |Hg_]la.nd_a.nd_]3,a.smuss_o_rj
). While the initial profiles for the ARM case are derived from the ARM measurements
as described in detail by |Bmm_&t_all (lZ_O_[]d)

2.5 Sampling procedures

For the numerical analysis only the cloud core data is selected. The cloud core is defined as
that part of the cloud where the virtual potential temperature is higher than the slab average

virtual potential temperature, liquid water is present and there exists a vertical flow upwards,

SO:
w > 0
O, > 0, (2.19)
a > 0

This means that all the calculated variables must be sampled. For the sampling an all or noth-

ing approach is used. So a gridpoint either satisfies the conditions or not. The conditionally

sampled horizontal slab-mean values [¢)], are then calculated using (Id_LB.Q_Q_d_L&D_d_BL&thﬂt@JJ,

@)

[ LvdA

[w]s - fAIS dA

(2.20)

The integration is over a slab at height z and I is one if the conditions are met, else it is zero.

The fraction (os) of gridpoints that satisfy the conditions is then given by:

J,I,dA

=i (2.21)

Os

The integrals are evaluated by summation over discrete gridpoints in the LES model.



2.6 Definitions

For notational convenience the square brackets denoting the sampling will be omitted when
concerning the vertical velocity so:
= ws (2.22)

[w] S

Another important part of this research uses the massflux. This is defined as:
M; = pos (ws — m) (2.23)

Since the density is often separated from the equations it is common to use a slightly modified

form. Also the slab averaged vertical velocity is typically very small and thus neglected:
M = 05w (2.24)

For notational simplicity the prime will be omitted from now on. The change of the massflux

with height is governed by the conditionally sampled conservation of mass equation:

oM,  Oos

0z ot

+ By — Dy (2.25)

Here F,, and D,, are respectively the lateral entrainment and detrainment for vertical mo-

mentum.
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3 Parameterization

3.1 Current Method

With all the mathematics and principles explained it is time to look at the parameterization.

It all originates from an article written by hmsmndﬂgg&ﬂl (I]_Q_G_d)

The whole idea of the parameterization is based on the fact that it should be possible to

model the behaviour of an ensemble of clouds as one big cloud. The basis comes from a model
of a spherical bubble rising in a coordinate system relative to the earth done by )
where he derives an equation for the vertical velocity of the centre of mass of a bubble:

dw 3(3 w?
——_B-I(ZK — A
. 8<4 2+cD) v (3.1)

Where B is the buoyancy as defined before (ZI2), K2 a mixing parameter, Cp a drag coeffi-
cient and R the radius of the bubble. The mixing parameter and the drag coefficient where

determined using lab experiments.

This idea was used for not just a bubble but for a whole cloud. Here R represents the radius
of a plume cap. The model used here is that of a rising plume. Here it states, as described

by |S_|_m_psg_n_e_t_a.]_] (I]_%_d), that the velocity with which the centre of mass of the plume cap

rises is fuelled by the buoyancy while being reduced by a drag term proportional to w?R. By

taking a coordinate system with its origin at the centre of the plume cap, which rises at a

rate: w = 0z/0t (lSj.m.psg.n_e.t_al], |l9.ﬁ£l) the time derivative changes to:

dw ow 0 [ w?
a9z 02 ( 2 > (3:2)

With this we arrive at the form as used by |S_Lm_ps_0_n_a_ndJM.gge_Lt| (I]_%d)

1 ow? 3/(3 w?

S -2 (2K “ .

2 02 8<4 2+CD>R (3:3)
|Sj_m_ps_on_a_ndJALiggar_tI (I]_%d) note that due to the deployment of equation ([B2)) a steady-state

is assumed.

11



Usinj lab experiments and comparison between model data and measurements hmma_ndﬂbggﬂ_tl

) made a few changes to equation ([B3]). They noted that the drag term, introduced be-
cause the vertical momentum was reduced by a larger factor than the entrainment could
account for, could better be described by reducing the buoyancy term with a virtual mass
term. This introduced another constant into the equation instead of C'p. Also they used the

following entrainment relation:

1 OM 9 Ko

el — 22 _ 3.4
Moz 32R (34)

Note here that this is different from the current idea that the massflux is equal to the entrain-

ment minus the detrainment [ZZ0)). At the time oflS.i.m.pso.n_a.ndJM.ggﬂLtl ]_95,4) detrainment

was not considered and the vertical change in massflux was simply proportional to the en-

trainment.

Using above formula to add the fractional entrainment gives the final form as used for ex-

ample by |S.Leb.esma._&t_a.ll (IZ0.0.ZJ):

1 0w,?
2 0z

= —bew,> +aB (3.5)

Here a and b are constants and the s subscripts have been added to denote the sampled values,

corresponding with the notation used so far. It should be noted that the constant b was not

added by hmpsmndﬂggﬂil (llQ.ﬁ.d) but is added later. Table (Bl gives an overview of

values for the constants a and b suggested by different authors.

Table 3.1: Current values suggested for the parameterization from different authors.

Author a b

Simpson and Wiggert (1969) 73 1

Simpson® Y3 2

Gregory (2001) Vs 3

Gregory " Ys 2
* as used in [Si ), from now on referred to as Gregory 2.
* as used in Siebesma. et al ) and ), from now on referred to as Simpson 2.
For the constants |S.Lm.psm:l_a.n.dJMggﬂ_ll (llE)_ﬁd) thus suggested:

2
a=g and b=1 (3.6)

12



As mentioned above the constant a is based on a virtual mass coefficient and using lab exper-
|Gr9q0r;I

iments was found by |S_|_m_psg_n_a.n_dJM.ggaLt| (IlQ_ﬁd) to amount to the factor a = 2.
) used a = 2/3 and b = 2, which differs with a factor 2 compared tolSim.psm_andJMggﬁLll

). This can possibly be attributed to using both the drag coefficient and the virtual

mass, instead of onli the virtual mass as suggested by |‘§1mmon and Wlﬁ (I]_9_ﬁ_d The

) are also the ones used by

values found by

@ (m then used a somewhat different model, because he has a different suggestion
for the fractional entrainment than the way it is suggested by ISi ]_9_6_d)

He therefore also uses a different approach for the sampled slab averaged vertical velocity:

1ow? 1 1
59, — 60 0w ew

(3.7)

We can rewrite this using the massflux ZZ0)) if we assume that the cloud cover is constant in

time:
1 dosws
pea e—9 (3.8)
Lows, 100 (3.9)

we 0z o 0z

Now we also have to assume that the cloud cover is constant with height, which allows us to

eliminate the fractional detrainment from equation (B7):

1 ow
§ = e———-=2
ws 0z
1 0w? 1 1 1 ow
- S — _B__ o S 2 2
2 0z 6 2<6 W 8z>w8 s
1 1ow? 3
_ = 27 2 1
6 4 0z 9=Ws (3.10)
= -B-3cw?

In the third step use has been made of the chain rule to bring the wy inside the deriva-
tive. Then rearranging and ultimatelﬁ multiplying by 2 gives a result comparable with the

parameterization (BX). So ) uses the following values for the constants:

and  b=3 (3.11)

1
a=—
3

This is different than those found by |S.Leb.esmahe.t_all (lZ.(lOd) when analysing the article by

), he finds a value of b = 2. The difference might be caused by the fact that

we have now assumed that the cloud cover is constant with height, which might be a poor

approximation.

13



There are three different physical interpretations for the parameterization given by multi-

ple authors. The first interpretation is given by hmsmnd_ﬂbggeﬂl (I]_Q_G_d) They say that

the pressure induces a virtual additional mass that the buoyancy transports upwards, thus

downscaling the buoyancy.

The second interpretation comes from both @ M) and |N_eggﬂs_et_all (IZO_O_EJ) They

state that scaling of the mixing term (b) can be interpreted as integrating the effect of pres-

sure perturbations, while the reduced buoyancy (a) is due to the loss of potential energy to

sub-plume turbulence.

The last interpretation comes from |S_|_Qbﬂma._et_a.]_] (IZO_O_ﬂ) He also has the same parame-

terization equation (BI), but he expresses the effects of the pressure in terms of the vertical

velocity variance as:

dp  Ouw,?
— 5 3.12
0z 0z (3.12)
Where p is a constant taken to be p = 0.15. Using this he arrives at:
1 ow,?
5 (1=2u) == = —bew,? + B (3.13)

This is the same result as equation ([B3]) but the pressure term is incorporated into the vertical
velocity variance instead of the buoyancy. The different values found by the various authors

are summarised above in table Bl

14



3.2 Conditionally sampled LES vertical velocity equation

To better understand the budgets that are absorbed in the constants, the equations governing

the LES model (213, ZT4)) have to be rewritten into something similar to the parameterization.

First using a mass-flux approach, as made by |Siehesma and 011iinersl (I]_B_E)_E]), the conditionally

sampled vertical velocity can be expressed as (Id.(LBmd.(La.n.d_B.r_ath.eLt.QIL |2.0.0d)

00 swg OMsws  Jog [w'w"| g — on
= - - . Ew e_Dw s s evs_ev —O0s | 5 14
ai 92 g7+ Butte = Duws t oy (us = 00) =00 |70 (314)

Here F,, and D,, are respectively the lateral entrainment and detrainment for vertical mo-
mentum, w” the deviations from the average in—cloud vertical velocity and M is the mass
flux. Comparing this with the original equation (ZI4]) directly shows the relation for the

lateral entrainment and detrainment and the effect of moving the square outside the sampling

operator:
0T Ouw ovw
Ew e_Dw s — ~—O0sg o —O0s | —5 —Og | —( 1
w w o [89@]8 o [&UL o [ay]s (3.15)
[wz]s = w?+ [w"w"] (3.16)

Here the assumption is made that all effects along the boundary can be modelled as an in-
coming and an outgoing term both proportional to the field, the entrainment and detrainment
(Iij_b_esm;J, |]_9_9_§) Using this, the continuity equation for the mass flux ([ZZ0) and the chain

rule of differentiation we can rewrite equation (BIdl):

Jws 0o s ow? 5005 Oog [w'w"],
75"t +wsﬁ T %, T e 0z B (w5 —we)
OM, Oog g — or
W+ ws s+ e (0v,s — 0,) — 0 [&] (3.17)

S
Applying the chain rule would normally also require the use of Leibniz’ rule @) and
would thus give rise to a boundary term. Due to the application of the mass flux approach,
using an entrainment and detrainment, all terms along the boundary are already absorbed

within the entrainment and detrainment. Now again using the chain rule:

OMs 500 an?

= 3.18
Y575, Ys 5, 2 0z (3.18)

We approximate the entrainment as follows:
Ey (ws — we) = ey0sws (W — we) ~ 6wasw§ (3.19)

where use has been made of the fact that the vertical velocity of the environment is much

smaller than that of the cloud.

15



Combining it all gives:

ows 1 ow?

iaas [w//w//]
o~ 2 0z O 0z

s _ 2 i ) _ 8_77
EWy + 90 (ev,s ‘91)) |:8Z:|S (320)

A similar approach as done above has been done by @ (M) The additional density
term he has, was omitted here because we are within the Boussinesq approach. With this last

step equation (BZ0) has a similar form as the parameterization (B3):

1 2
1 8'[05 — i (91} < —
2 0z (90 ’

0,) — eww; — - — 5 (3.21)

— 5 Ows 1o [w'W"];  [Om
ot O 0z s

From this it is clear that the last three terms on the right-hand side are incorporated into the

constant (a), in the case of ISi i (I]_Q_G_d), or the constants (a and b), in the
case oflSj_eb_esma._at_a.]J (IZO_O_EJ) and @ ), of the parameterization (BIJ).

What is left is one unknown, being the fractional entrainment ¢,. The fractional entrain-

ment is often diagnosed using the continuity equation for a scalar:

dopy B OM1ps

= Ev. — D), 3.22
When assuming a steady-state solution this becomes (IN_e_ggﬂs_at_a_]J, |20_0_Ei)
— —1 Y
co=— (s —7) " 22 (3.23)

Here ¢ can either be the total specific humidity ¢; or the liquid—water potential temperature

0;. When applying the parameterization one commonly assumes:
Ew = Eq (3.24)

Unless otherwise stated all results presented are based on this assumption.

16



4 Results

For both cases the various budget terms as described by formula (B2l are calculated using
the LES model, while the entrainment will be calculated using the ¢; budget ([B23) In the
following section these budgets will be analysed for both the BOMEX and ARM case. For
both cases different possibilities for the constants of the parameterization will be discussed
resulting in a suggestion for these parameters for the two cases. All figures containing different
budgets or other variables of the cloud core are plotted on a axis which contains the height
levels where there exists a cloud core. At cloud base and even more so at the top the budgets
terms can show strange behaviour, like extraordinary high or low values. For these areas the
cloud core cover is so low that the numeric sampling can no longer be used to accurately

describe the situation.

4.1 BOMEX case

In figure BTl the budget terms in the cloud layer are displayed for the 8" hour of simulation,
these results are fairly representative for the 3™ till the 8" hour. The first two hours are
omitted because the system is then still in the startup phase. From this data it is clear
that the buoyancy is the forcing term of the equation. However, the lateral mixing term
(entrainment term) and the pressure term are both negative and of roughly equal size. This
suggests a possibility for parameterization of the pressure term using the lateral mixing term.
From these observations scaling the lateral mixing to account for the pressure term seems

possible, at least for the lower part of the cloud.
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Figure 4.1: Budgets of the vertical velocity equation (BZ2II) for the 8" hour of simulation for
the BOMEX case.

The subplume term however does not seem to have any parallel with any of the other terms.
It is, for instance, the only term that changes sign halfway the cloud core layer. It is also clear
that the time dependence is negligible small. Unfortunately this means that there is no clear
connection between the subplume term and either the buoyancy or gradient of the vertical
velocity squared. Based on this data there seems to be no apparent reason to approximate
the subplume term by scaling another term. However, the subplume term is not very large.

It gives only a small contribution and it might be possible to neglect it.

So far there seems to be a connection between the pressure and the entrainment term. From
the graph in figure BTl this even seems to directly suggest a value for the constant b = 2. This
is also what currently is used in various GCMs (table BI). Neglecting the subplume term

would give for the other constant simply a = 1.

We want to check the hypothesis and also compare the results found with the values sug-
gested by other authors (table Bl). Table (Il gives an overview of the various values for
the constants (a and b) as suggested by different authors and the values based on the LES

budgets found during this research.
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Table 4.1: Suggested values for the constants of the parameterization based on literature and
the BOMEX and ARM case results

Name a b
Simpson 73 1
Simpson 2 ¥, 2
Gregory Y3 3
Gregory 2 Y 2
Result LES BOMEX 1 2
Result LES ARM Y, 1

The values linked to authors are the same as found in table (BI).

1 ng

To check the hypothesis we calculate 5+ using the different constants a and b, as shown in

table () using the buoyancy, fractional entrainment (g4,) and vertical velocity as calculated

by the LES model and compare this with the results from the LES model.

Height (m)

1500
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500

O 1 1
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LES ow_ 2loz
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0.005 0.01 0.015

0
ow_ 2/0z (m/s?)

Figure 4.2: Comparison of the derivative of the vertical velocity squared calculated using the

constants with the one calculated by the LES model for the 8" hour of simulation for the

BOMEX case. The values for the constants belonging to the different authors can be found
in table ET1
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Figure shows that the above proposed values for a and b give a much better result. How-

ever, the values suggested by |S_Lm_psg_u_a_ndJAL|ggﬁr_t| (I]_%_d) (a =2/3 and b = 1) give an even
better solution.

Besides from the budgets the resolved vertical velocity squared is compared with the ver-
tical velocity squared evaluated using the parameterization. The differential equation has

been evaluated using the buoyancy and entrainment calculated by the LES model, as follows:

Y= w
Yli = 0
1yl —9ln—1] _ aBn] — beg,¥[n] (4.1)

2 0z

Here n denotes the height level which corresponds to a height of 40(n — 1) meters since the
model calculates the buoyancy and ¢; values every 40 meters. We use this system to solve the
vertical velocity squared for both the currently used and the suggested parameters derived
from the LES results. The starting value is chosen to be zero because there is no cloud core

present at the surface; cloud base is around 600 [m|. The results are displayed in figure

15001
—— Simpson
- == Simpson 2
1000 — Gregory
. —— Gregory 2
E —— BOMEX
f,, ---ARM )
£ ___LESw_
500
O 1 1 1 1 J
0] 2 4 8 10

6
w 2 (m 2/52)

Figure 4.3: Comparison of the vertical velocity squared for the current and suggested param-
eter values for the 8" hour for the BOMEX case. The values for the constants belonging to
the different authors can be found in table LTl
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The vertical velocity squared is very close to the vertical velocity squared as calculated by the
LES model for the suggested constants based on the LES data for the BOMEX case. Appar-
ently a = 1 and b = 2 predicts almost the same vertical velocity as the constants a = 2/3
and b = 1. Both solutions are very close to the LES data. Both solutions would give the
correct results for the vertical velocity squared, but based on the budgets (figure EE2) taking

the pressure effect into account through the prefactor a (scaling the buoyancy) is preferable.

This is also what was found by |S_Lm_ps_0_u_a_ndJMgge_Lt| ).

To further verify the findings and possibly find even better values an optimisation has been
done with the data. We keep the constant b = 1, because both the BOMEX case and the
ARM case, described in the next section, seem to support this theory. Here should be noted
that table BTl gives another value based on the result of the LES BOMEX, but this is the
result from observation of the budgets of the BOMEX case (figure EE1l). The comparisons of
the gradient of the conditionally sampled vertical velocity squared (figure EE2) and the con-
ditionally sampled vertical velocity squared (figure EE3)) showed that keeping b = 1 gives an

even better approximation.

For this optimisation the vertical velocity squared is calculated using the same procedure

2

as above (Il (now referred to as wg,,

) for different values of a. The optimum value for the

constant a is determined as the value for which the following is as small as possible:

cloudtop

Z |w%ES - wgar‘ (42)

cloudbase

Cloud base and cloud top are estimated based on the data, but do not need to be very precise.

wrps is the vertical velocity as calculated by the LES model.

This approach gives an optimum value for a = 2/3 like found by |S_Lm.psg_n_a.n.dJMgge_Lt| (I]_%d)

and also found above. There is hardly any difference between the various hours of simulation

and this further supports the values found by |Sj_m_ps_0_u_a_ndﬂbggﬂ_tl (I]_%d)
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Figure 4.4: Fractional entrainment calculated using either the remainder of equation ([B2Z])(&,,)

or the ¢; budget [TZJ)(e,,) for the 8" hour of simulation for the BOMEX case.

It should be noted that the fractional entrainment is calculated using ¢; (B223)). When deriving
the fractional entrainment directly from equation (BZIl), thus calculating e, without the
assumption that it is equal to €4,. Using it to exactly close the equation we obtain a slightly
different fractional entrainment and thus different results for the vertical velocity as calculated
above. Figure B4l shows the fractional entrainment for the 8" hour using the two methods
of calculation. The differences are relatively small, making the entrainment model with ¢

B23) a good approximation. For the earlier hours the difference is either equal or smaller
than shown for the 8" hour.
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4.2 ARM case

For the ARM case the 7' till the 12'" hour are used. Before the 7" hour almost no clouds
are observed, while after 12 hours of simulation the budgets will remain the same for a few
hours, before changing again due to the diurnal cycle. This last period of the ARM case is
not analysed and may yield other results then presented here. In the figures only the 9*" and
12" hour are displayed. The 7" and 8™ hour are roughly similar to the 9®" hour. The terms
for the hours between the 9"" and the 12" hour show a gradual change from their behaviour
in the 9*" hour to that observed in the 12" hour. The budgets are clearly different from those
observed at the BOMEX case. From the budgets it is clear (figures and E6) that the
pressure term almost completely balances the buoyancy and is not similar to the entrainment
term as found in the BOMEX case. Based on this case it would be more logical to scale the

buoyancy to account for the pressure term, while again the subplume term seems sufficiently

small to neglect it.
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Figure 4.5: budgets of the vertical velocity equation () for the 9" hour of simulation for
the ARM case.
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Figure 4.6: budgets of the vertical velocity equation [ZI) for the 12'" hour of simulation for
the ARM case.

Using the same method as with the BOMEX case ([l to compare the vertical velocity, calcu-
lated with the various constants (table E1I), with the result of the LES model. we see that the
LES calculated value starts close to the parameterization with constants @ = Y3 and b = 2 but
later on approaches the parameterization with the constants a = 2/3 and b = 2 (figure E1]).
Between these values is the line for the constants @ = 1/3 and b = 1. The last option seems
most logical compared to the budget terms found. We also see a similarity for the relation
between the constants as with the BOMEX case, the computed vertical velocity squared with

the constants a = 2/3 and b = 1 and with the constants a = 1 and b = 2 are again almost equal.
The optimization done for the BOMEX case is also used for the ARM case and shows roughly

the same. The optimum for the constant a = 1/3 is again found. Although for later hours it

no longer holds. The optimum value for a then grows towards 1/2.

24



2500

1

-
-
-

- -

2000+ —— Simpson
=== Simpson 2
— Gregory
1500 — Gregory 2
E —— BOMEX
5 ---ARM )
(3]
£ 1000 ___LESw,_
500
0O é 110 | 2? 215 310 3‘5
w 2 (m2/s )
2500
2000+ —— Simpson
- == Simpson 2
— Gregory
— 1500 —— Gregory 2
E —— BOMEX
5 ---ARM )
(<5}
T 1000 ___LES w
500
O 1 1 1 1 1 1 J
0 5 10 15, 520 25 30 35
w (m*/s%)

Figure 4.7: Comparison of the vertical velocity squared for the current and suggested param-
eter values for the 9" (top) and the 12'" (bottom) hour for the ARM case. The values for the
constants belonging to the different authors can be found in table BTl
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A big difference is observed in the fractional entrainment. The fractional entrainment calcu-
lated through the ¢; budget is roughly similar to that observed in the BOMEX case, however,
it is completely different from the fractional entrainment calculated from the remainder of
equation ([BZI) (figures and E£9)). The entrainment calculated from the remainder, thus

the entrainment that would balance equation (BZIl), is negative over the entire cloud.
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Figure 4.8: Fractional entrainment calculated using either the remainder of equation (BZII) or

the ¢; budget X)) for the 9*" hour of simulation for the ARM case.
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Figure 4.9: Fractional entrainment calculated using either the remainder of equation (BZI) or

the ¢; budget [ZJ) for the 12" hour of simulation for the ARM case.

An explanation for the negative values of ¢,, might be found in the subsiding shell. As shown
by m

compared to the upward massflux within the cloud. For smaller clouds the relative downward

) the subsiding shell surrounding each cloud has a significant negative massflux

massflux of the shell, compared to the upward massflux in the cloud, is larger. The subsiding

shell obviously influences the massflux and this effect scales with the cloud radius.

There can be two situations. In the first situation the area around the cloud core has a
negative vertical velocity and thus moves downward. The area around the cloud core can also
have a positive vertical velocity and thus move upward. Because the budget term in equation
BId) contains the products E,we — Dyws and for this the assumption is made that the
vertical velocity of the environment is negative, when the vertical velocity of the environment
in the vicinity of the cloud is positive this could result in an negative fractional entrainment
(€w). This could explain the difference between the two fractional entrainments (g, and g, ).
The two situations are sketched in figure (EI0).
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Figure 4.10: Tlustration of the two possible situations with a subsiding shell around the cloud

core. The arrows indicate the direction of the vertical velocity.

Heud (2008) showed that there is a clear subsiding shell around the clouds for the BOMEX
case and within the shell the vertical velocity is negative. It can be argued that the shell
surrounding the cloud core for the ARM case has a positive vertical velocity which gives rise
to a negative fractional entrainment making the assumption €,, = ¢4, false. This would have a

obvious impact on the various terms of the parameterization and thus influence the constants.
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5 Conclusion

A Comparison of all the conditionally sampled vertical velocity budgets from both cases shows
that the leading force is the buoyancy, closely followed by both the lateral mixing and the pres-
sure term. For the BOMEX case the pressure term is almost equal to the lateral mixing term,
so the pressure term can easily be parameterized by scaling the lateral mixing with a factor
of two. By resolving the vertical velocity squared from the parameterization and comparing
it with the LES calculated vertical velocity squared, showed that scaling the lateral mixing
term accurately predicts the vertical velocity. However, it is also possible to account for the
pressure by scaling the buoyancy, which gives even better results, mainly when comparing
the scaled budgets directly with the gradient of the vertical velocity squared, and is more in

agreement with the ARM case.

The ARM case shows a different behaviour, here the pressure term is much larger than the
lateral mixing term. The pressure term for the ARM case has the same (opposed) shape as
the buoyancy term. Scaling the buoyancy to account for the pressure term gives an accurate

prediction of the vertical velocity squared.

The constants with which the buoyancy is scaled for both cases is different. Because the
pressure term in the ARM case is much larger compared to the buoyancy than in the BOMEX

case, the scaling for the two cases is shown in figure BTl

Table 5.1: The best values for the constants a and b for the BOMEX and ARM cases for the
parameterization (BI).

Case a b
BOMEX Y3 1
ARM Vs 1

From these results it seems that the pressure term, that tends to damp the upward vertical
velocity of a parcel of cloudy air, does this reduction with a factor of the buoyancy and to-
gether with the lateral mixing they are the main principles that describe the vertical velocity
of a cloud parcel. Since the factor with which the pressure reduces the buoyancy is different
for both cases, there is probably a dependency on some other parameter. The subplume term

is so small that it can be neglected, rather then parameterized.
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From the fractional entrainment calculated for both cases it seems that there is a major dif-
ference between the fractional entrainment calculated using a ¢ budget and the entrainment
needed to close the massflux based variant of the governing equations (BZI]) for the ARM case,
while there is almost no difference for the BOMEX case. An explanation for this can perhaps
be found in the subsiding shell surrounding clouds. m) showed that the subsiding
shell can have a significant influence on the massflux. Within a subsiding shell it is possible
that the vertical velocity is upward. In this case the fractional entrainment would be negative

as is also seen in the LES data from the ARM case.

The research showed for both the ARM and BOMEX cases that it is possible to accurately
describe the vertical velocity with the parameterization currently used, but the constants are
different. Partly both from the currently used ones as from each other. Still scaling the buoy-
ancy with a constant is possible although a measure or condition for the amount should be

found.

A last note should be made to the fact that comparison of the vertical velocity squared
resolved using the parameterization for different constants showed that choosing ¢ = 1 and
b = 2 results in the same vertical velocity squared as a = %3 and b = 1. At this point there
seems to be no reason why this should be the case, however both cases showed this same
relation and perhaps there is a balance somewhere between these two constants that could be

used in the future.
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