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Abstract

In order to improve climate models, much research has been done to the ocurrence and the
behaviour of clouds. To this end it is necessary to obtain more knowledge about the conditions
under which a clear sky becomes cloudy. The aim of this thesis is to predict the start of cloud
formation inside a clear atmospheric boundary layer, which is advected over the ocean from the
subtropics to the tropics by the trade winds.
To calculate the evolution of the boundary layer the Mixed Layer Model is used. Using this
model it is possible to calculate the evolution of the average values of the temperature, the
pressure and the humidity inside the boundary layer, without calculating the actual motion of
the air. This significantly reduces calculation time.
The conservation equations are presented and the development of the boundary layer and its
interaction with the rest of the atmosphere is introduced. Using those two the model equations of
the Mixed layer Model are derived. Together with the model equations some parameterizations
are given to close the system.
It is known that the transition from the boudary layer to the layer above it, is characterized by a
sudden increase of the temperature and a sudden decrease of humidity, called the inversion. The
magnitudes of the increases in temperature (∆θ) and the humidity (∆qt) play an important role
in the formation of clouds. The main topic of investigation is the infuence of the initial values
of ∆θ and ∆qt on the time after which clouds start to form. Next to these two the influence on
three other variables is invesitgated. The variables investigated are the initial inversion height,
the wind speed and the large scale divergence.
We have shown that as ∆θ gets larger cloud start to form earlier, while as ∆qt gets larger cloud
formation starts later. Furtermore the lower the initial inversion height the later cloud formation
starts, if the initial inversion height is chosen low enough no clouds occur at all. The influence
of the wind speed turns out to be more or less the opposite of the influence of the large scale
divergence. More wind makes cloud formation start sooner, while more divergence tends to
delay cloud formation.
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Chapter 1

Introduction

In the last few decades concerns have risen about the changing climate and its consequenses. One
of the major problems in today’s climate models is the uncertainty in the influence clouds have
on the climate. Also the desire to make weather forecasts more accurate requires more knowledge
about the occurence of clouds, as clouds provide rain, block sunlight at daytime and prevent
cooling of the earth surface at nighttime. Therefore much research is done to the formation
and behaviour of clouds. In cloud modeling two major modeling methods are used. The first
method is Large Eddy Simulation. This method calculates the cloud dynamics rather detailed.
The other model is the Mixed Layer Model(MLM). It describes the atmospheric boundary layer,
which is the lowest atmospheric layer, in terms of temperature, pressure and humidity, without
calculating the motion of the air. The fact that the motion of the air is not calculated makes
the model relatively simple and thus cheap in terms of computing time. A limitation is that the
only spatial dimension that plays a role in the model is the height. But the model is capable
of calculating the temperature, the pressure and the humidity as a function of time and height
and thus, with the help of thermodynamics, it is capable to calculate the amount of liquid water
(and ice) as a function of height. At heights where liquid water (or even ice) is present we can
conclude that clouds occur. So with the MLM it is possible to calculate on which heights cloud
formation is to be expected. In this thesis the MLM is used to investigate the effect of the initial
temperature jump and the initial moisture jump across the inversion on the time scale at which
clouds start to form. The environment investigated is an environment above the ocean between
the equator and the so-called horse latitudes, these horse latitudes are 30-35 degrees north and
south.
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Chapter 2

Theory

In this chapter the behaviour of the boundary layer and its interaction with the rest of the
atmosphere is introduced. To understand this behaviour and the interactions some variables
that make calculations in meteorology more convienient are introduced first. Afterwards the
behaviour of the boundary layer is described using the general conservation equations. Lastly
the development of the boundary layer and its interaction with te rest of the atmosphere is
introduced.

2.1 Basic meteorological variables

2.1.1 Specific humidity

To be able to understand the equations which discribe the mixed layer some basic variables,
common in meteorology, have to be introduced. The first one is the total specific humidity qt.
It is defined as the mass fraction of the total amount of water in a parcel of air:

qt =
mw

m
. (2.1)

Here mw is the mass of the water inside the parcel of air and m is the total mass of the parcel:
m = mw +md where md is the mass of dry air. In general the specific humidity can consist of
three fractions: an ice fraction qi; a liquid fraction ql and a vapour fraction qv. Because in this
thesis only the situation of clear sky is studied the only fraction present in the air is the vapour
fraction so qt = qv. To be able to calculate whether a cloud occurs we need another variable:
the specific humidity of saturation (qsat). It is given by the relationship of Clausius-Clapeyron:

qsat =
esat

p− esat
. (2.2)

In this formula p is the pressure and the function esat is given by:

esat = 610.087e
17.2649(T−273.16)

T−35.86 . (2.3)

Here we see that esat strongly depends on the temperature. In the next subsection it will be
made clear how the variable temperature is treated in meteorology.

2.1.2 Potential temperature

It is commonly known that in the atmosphere the temperature decreases with the height. In
meteorology a variable is used which is corrected for this, the potential temperature θ. First we

3



4 CHAPTER 2. THEORY

try to find out what happens to the temperature of a parcel of dry air which is moved along the
z-axis adiabaticly. To do this we start with:

dp

dz
= −ρg. (2.4)

Here ρ is the density of dry air and g is the gravitational acceleration. From thermodynamics
we have the differential relation dh = Tds + vdp where h, s and v are the specific enthalpy;
the specific entropy and the specific volume respectively. The process is adiabatic so ds = 0.
Furthermore the enthalpy is related to the temperature through dh = cpdT , where cp is the
specific heat at constant pressure, and v = 1

ρ . So now we have:

cpdT =
dp

ρ
. (2.5)

Combining equations (2.4) and (2.5) gives:

dT = −gdz
cp

. (2.6)

Integrating this equation yields:

T = T0 −
gz

cp
. (2.7)

The variable T0 is, as can be easily seen in (2.7), the temperature a parcel of air would have at
the bottom of the mixed layer (height z = 0). Using the ideal gas law:

ρ =
p

TRd
, (2.8)

where Rd is the gas specific constant of dry air, the pressure in the parcel of air can be related
to its height.
Combining equations (2.4), (2.7) and (2.8) we get:

dp

dz
= − g

Rd

(
T0 − gz

cp

)p. (2.9)

This can also be written as:

dp

p
= − gdz

Rd

(
T0 − gz

cp

) . (2.10)

Using the fact that
∫

a
b+cxdx = a

c ln (b+ cx) this gives:

p = p0T
− cp

Rd
0

(
T0 −

gz

cp

) cp
Rd
, (2.11)

where p0 is a reference pressure. With the fact that T = T0 − gz
cp

this can be rewritten to:

T

T0
=

(
p

p0

)Rd
cp

. (2.12)

Here T
T0

is known as the Exner function, which is denoted by Π (p). In meteorology it is common

to use p0 = 105Pa as reference pressure. When using this reference pressure the reference
temperature T0 is called the potential temperature and is denoted by θ. So now we have:
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Π =
T

θ
. (2.13)

Equations (2.8) up to (2.13) apply for dry air only. It is known that water vapour has less
density than dry air, so the specific humidity has influence on the buoyancy of air. Looking at
(2.8) we must conclude that moist air has a larger gas constant. In meteorology it is common to
adapt the value of the temperature instead of using a gas constant which is not really constant
but a function of the total water content (qt). The adapted value of the temperature is called
the virtual temperature. It is denoted by a subscipt v. This virtual temperature is defined as
the temperature a parcel of dry air with the same density and pressure would have. The formal
derivation of this virtual temperature can be found in Stull (1993):

Tv = (1 + 0.61qt)T. (2.14)

Dividing this virtual temperature by the Exner function gives the virtual potential temperature:

θv =
Tv
Π
. (2.15)

2.2 The conservation equations

The starting point to find the basic equations of the mixed layer model is the set of conservation
equations:

∂ψ

∂t
+
∂ujψ

∂xj
= 0. (2.16)

In this equation xj represents the Cartesian coordinates, ~x = (x, y, z), ψ is any conserved
quantity (such as θ, θv and qt), uj is the jth component of the wind velocity and ~u = (u, v, w).
Equation (2.16) is averaged using Reynolds averaging, this means splitting the variables in a
mean part ψ and a deviation from the mean called the turbulent part ψ′, so that ψ = ψ + ψ′.
Averaging (2.16):

∂ψ

∂t
+
∂ujψ

∂xj
= 0 (2.17)

In the mixed layer model it is assumed that the atmosphere is horizontally homogene. Using
this assumption and (2.17) van der Dussen (2009) derived that:

∂ψ

∂t
+ w

∂ψ

∂z
= −∂w

′ψ′

∂z
. (2.18)

Here w′ψ′ denotes the turbulent flux of ψ. Another assumption of the mixed layer model is
that any conserved quantity is spread uniformly over the boundary layer. The reasoning behind
this assumption is that the sea surface is always a lot warmer than the atmosphere. This
temperature difference between the sea surface and the atmosphere induces a lot of turbulence
inside the boundary layer. It is assumed that the turbulent transport evens out gradients in
conserved quantities quickly. This is the reason why the boundary layer is also called the (well)
mixed layer. This means that conserved quantities don’t have vertical gradients. So the second
term of (2.18) is zero giving:

∂ψ

∂t
= −∂w

′ψ′

∂z
. (2.19)
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Futhermore a quasi steady state situation is assumed so that ∂
∂t
∂ψ
∂z = 0 combining this with

(2.19) gives:

∂

∂z

∂w′ψ′

∂z
= 0. (2.20)

This implies that the fluxes are a linear function of the height, so that (2.19) can be rewritten
to:

dψ

dt
= −w

′ψ′zi − w′ψ′0
zi

. (2.21)

Where zi the thickness of the mixed layer, w′ψ′zi is the flux at the top of the mixed layer and

w′ψ′0 the surface flux. In the rest of this thesis the value of a Reynolds averaged quantity ψ
inside the mixed layer will be denoted by ψml.
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Figure 2.1: The profile of θ.
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2.3 Boundary layer dynamics

In this subsection the interaction between the boundary layer and the rest of the atmosphere is
briefly introduced. A more detailed description can be found in van der Dussen (2009).

2.3.1 The Hadley circulation

To understand this interaction we have to look at the global circulation of the air inside the
atmosphere. The ciculation is induced because at the equator, where insolation is strongest, air is
heated up and transported upwards and looses its moisture due to rain. This air is transported
north- and southwards and comes down around the horse-latitudes (30-35 degrees north and
south). The air is transported back by the so called trade winds. This air circulation is called
the Hadley Circulation. A schematic picture of this circulation is given in figure 2.2.

Figure 2.2: A schematic picture of the Hadley circulation.

So around the horse latitudes relatively warm and dry air is advected downward, this downward
advection is called subsidence. This makes that the potential temperature increases with height.
In this thesis it is assumed that the potential temperature increases linearly with height in what
we call ”free atmosphere”. It is known from measurements, that the potential temperature
increases with 5 to 6 K/km. A consequence of this increase in potential temperature is that if
a parcel of is moved upwards adiabatically inside free atmosphere, its temperature will become
lower than the temperature of its environment. Therefore it will fall back to its original height.
Thus the free atmosphere has a laminar structure. At the surface the laminar structure is
disturbed due to a large temperature difference between the surface and the air above it. This
temperature difference generates a lot of upwards turbulent advection of air. The only way
the air is decelerated is when it encounters air of a higher temperature. This will happen
because the potential temperature in free atmosphere only increases with height. So the air
advected from the surface will be able to reach just a certain height. Just below this height
the potential temperature will be much lower than just above it. So across the interface form
the boundary layer to the free atmosphere the temperature shows a very sharp increase. This
interface, although it is in reality in the order of 50m thick, is modelled as an infinitessemal thin
layer called the inversion. As mentioned earlier the turbulent character of the boundary layer
gives rise to the assumption that local gradients of any conserved quantity are evenend out, this
means that the value of any conserved quantity is in good approximation constant throughout
the boundary layer. An example of such a conserved quantity is the potential temperature.
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So the potential temperature profile in the atmosphere behaves as follows:

1. The boundary layer in which the potential temperature is constant

2. The inversion, a sharp increase in potential temperature

3. Free atmosphere where the potential temperature increases with 5− 6K/km

A schematic plot of this potential temperature profile is given in figure 2.1.

2.3.2 The inversion jump

The existence of the inversion jump makes transport across the inversion jump difficult because
air that moves form the boundary layer into free atmosphere encouters air of a much higher
temperature, so it will get a large deceleration. There is however some transport across the
inversion because some of the air inside the boundary layer will have enough upward velocity
to cross the inversion. Above the inversion it will encounter warmer, and thus less dense, air
so it will fall back into the boundary layer. Falling back into the boudary layer it will drag
some of the warm, dry air from the free atmosphere into the boundary layer. This process is
called entrainment. When air is entrained into the boundary layer the total amount of air inside
the boundary layer increases while the density of the air remains practically the same. This
means that the boundary layer must get thicker, so the inversion height must increase. Another
effect that influences the motion of the inversion is the subsidence, which pushes the inversion
downwards. Both the entrainment rate and the subsidence are expressed as speeds so that the
change of the position of the inversion is the sum of these speeds:

dzi
dt

= we + wsubs. (2.22)

Here we is the entrainment rate, wsubs is the subsidence speed and zi is the inversion height. The
temperature jump across the inversion is easily calculated with ∆θ = θfa|z=z+i − θml where θml

is the potential temperature inside the mixed layer and θfa|z=z+i is the potential temperature

just above the inversion, it will be denoted by θfa in the rest of this thesis. This potential
temperature depends on the inversion height, as can be seen in figure 2.3. Assuming that after
a certain time t1 the inversion height has moved from zi(0) to zi(t1) it is easily calculated that
in the final situation θfa(zi(t1)) = θfa(zi(0)) + Γθ (zi(t1)− zi(0)) so that:

∆θ = θfa(zi(0)) + Γθ (zi(t1)− zi(0))− θml. (2.23)

The profile of the specific humidity looks similar. We know that the specific humidity is a
conserved quantity so it is constant throughout the boundary layer. In free atmosphere the
Hadley circulation causes a downward advection of relatively dry air, so that the free atmosphere
is dryer than the boundary layer. In this thesis the specific humidity in free atmosphere (qt,fa)
is assumed to be constant in both height and time. A plot of the profile of the specific humidity
is given in figure 2.4. The jump in the humidity is calculated as: ∆qt = qt,fa − qt,ml where qt,ml
is the specific humidity inside the mixed layer.
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Figure 2.3: The profile of θ.
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Chapter 3

Modeling

In the previous chapter two conserved variables have been introduced, namely the potential
temperature and the total specific humidity. In this chapter it will be shown that those two
variables together with the inversion height determine whether clouds occur. The equations that
determine the evolution of those three variables, the model equations, will also be presented in
this chapter. In order to close the obtained system of equations, parameterizations will be given
in section 2 and model parameters and initial conditions will be given in section 3.

3.1 Model equations

The purpose of the model used in this thesis is to find out under which circumstances clouds will
form inside the boundary layer and if so, how long it takes before they start forming. It is clear
that a cloud starts to form when somewhere the air reaches the saturation point, this means
qt = qsat. In the previous section we made the assumption that conserved variables, such as qt
are spatially independent inside the boundary layer. So the position at which a cloud starts to
form is the position at which qsat is lowest. equations (2.2) and (2.3) show that qsat depends on
the absolute temperature T and the pressure p. Using equations (2.7) and (2.13) both T and
p can be written in terms of p0, θ and z. So qsat can also be expressed in terms of these three
variables. In figure 3.1 qsat is plotted as a function of T at several values of p.
Figure 3.1 makes clear that qsat depends on T quite strongly while it hardly depends on p.
Knowing that T decreases with height according to (2.7) and that the free atmosphere is warmer
and dryer than the boundary layer. It can be concluded that saturation will occur earliest at
the top of the boundary layer. To find out how much time it takes before saturation is reached
the evolution of qsat and qt must be calculated. Because saturation will occur earliest at the top
of the boundary layer we are only interested in the value of qsat at the top, which is denoted
by qsat,top. In section 2 we have seen that qsat,top depends on θml and zi only. The fact that all
advection processes in the atmosphere are buoyancy driven complicates direct calculations with
θml, therefore the adapted value θv,ml will be used. The evolution of θv,ml and qt,ml is described
by (2.21), the evolution of zi is described by (2.22). So the basic equations of the model are:

dθv,ml
dt

= −
w′θ′v,zi − w′θ′v,0

zi
; (3.1a)

dqt,ml
dt

= −
w′q′t,zi − w′q′t,0

zi
; (3.1b)

dzi
dt

= we + wsubs. (3.1c)

11
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Figure 3.1: The humidity of saturation plotted as a function of T for 5 different values of the
pressure.

In (3.1a) the variable w′θ′v occurs. This variable is called the virtual potential temperature
flux. In the next subsection we will see that the temperature fluxes at the top can be written
in terms of the temperature fluxes at the surface. The temperature flux at the surface will be
parameterized as a potential temperature flux and not as a virtual potential temperature flux.
So the virtual potential temperature flux has to be related to the potential temperature flux
w′θ′. This relation as derived in van der Dussen (2009) is:

w′θ′v = w′θ′ + 0.61θ · w′q′t. (3.2)

In the next subsection the entrainment rate will be paramerized. We have seen that entrainment
is a buoyancy driven phenomenon. This implies that it depends on the difference in virtual
potential temperature (which is a measure for buoyancy) between the mixed layer and the free
atmosphere. This difference is denoted by ∆θv and is calculated as:

∆θv = θfa (1 + 0.61qt,fa)− θml (1 + 0.61qt,ml) . (3.3)

As we have seen earlier θfa depends on the inversion height according to θfa(zi) = θfa(zi(0)) +
Γθ (zi − zi(0)) so that we get:

∆θv = θfa(zi(0)) + Γθ (zi − zi(0)) (1 + 0.61qt,fa)− θml (1 + 0.61qt,ml) . (3.4)
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3.2 Parameterizations

In system of equations (3.1) there are three equations in terms of more than three variables. Our
goal is to find the evolution of θv, zi and qt so all variables have to be expressed in terms of these
three variables so that system (3.1) can be solved. For the turbulent flux at zi an approximate
relation is derived by Lilly (1968):

w′ψ′zi = −we∆ψ, (3.5)

where ∆ψ is the jump of ψ across the inversion. For the entrainment rate the parameterization
of Moeng (2000) is used:

we = A
w′θ′v,0
∆θv

, (3.6)

where the parameter A = 0.2. Now a relation has to be found for the surface fluxes. These
fluxes are parameterized as follows:

w′ψ′0 = CDU (ψs − ψml) , (3.7)

where ψs is the value of ψ at the surface, U is the wind speed and CD is an exchange coefficient
which is in good appoximation equal to 0.001 Wakefield and Schubert (1981).
The last unknown variable in system of equations (3.1) is the subsidence speed at the inver-
sion. Inside free atmosphere the subsidence speed is porportional to the height according to
wsubs = Dz, where D is called the large scale divergence, so at the inversion the subsidence
speed is equal to:

wsubs = −Dzi. (3.8)

With these parameterizations system of equations (3.1) can be rewritten in a form where the
only variables are θv,ml, zi and qt,ml.

3.3 Model parameters and initial conditions

With the three model equations written in terms of three variables the model parameters (such
as Ts and θfa(0)) and three initial conditions have to be chosen. Before choosing these values
it is necessary to look at the heat balance of the boundary layer. In figure 3.2 the heat balance
in a silce of air with width ∆x and height zi is drawn schematically. We consider the slice to
be moving with speed of the trade wind in the direction of the equator. The wind speed of the
trade wind is denoted by U . As the slice moves southwards the sea surface temperature Ts will
increase, this increase is about δTs = 3 · 10−6K/m so Ts is calculated as:

Ts = Ts(0) + δTs · U · t, (3.9)

where t is the elapsed time. The initial potential temperature in the mixed layer (θml(0)) is
determined by a prescribed initial surface heat flux (H). This heat flux is calculated as:

H = ρcpCDU (Ts − Tml(t = 0, z = 0)) = ρcpCDU
(θs − θml(0))

Π(psurf )
. (3.10)

This heat flux is assumed to be linearly dependent on the wind speed, so that H = c0U + c1.
Furthermore it is assumed that for wind speeds considered in this thesis the transport from
the surface to the atmosphere due to forced convection dominate over the rest of the forms of
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Figure 3.2: The heat balance of the boundary layer.

transport so that c1 ≈ 0. Thus H
U is constant. So θml(0) can be calculated using a reference

value for the wind speed, Uref at which the value of the initial heat flux is Href . This results in:

θml(0) = θs −
HrefΠ(psurf )

UrefρcpCD
. (3.11)

The initial potential temperature just above the inversion (θfa(0)) is determined by a prescribed
initial temperature jump (∆θ(0)) across the inversion so:

θfa(0) = ∆θ(0) + θml(0). (3.12)

The surface humidity (qt,s) is determined by the assumption that the air at the surface is
saturated so that:

qt,s = qsat(Ts, psurf ). (3.13)

The value of qsat is of course calculated using the realtionship of Clausius-Clapeyron. The initial
mixed layer and free atmosphere humidities (qt,ml(0) and qt,fa(0)) are determined in a similar
way as the mixed layer and free atmosphere initial potential temperatures. qt,ml(0) is determined
by a prescribed initial latent heat flux LE. LE is calculated as:

LE = ρLvCDU (qt,s − qt,ml) , (3.14)

here Lv is the latent heat of vaporization. LE is assumed to be linearly dependent on the wind
speed accoding to LE =

LEref

Uref
U , where LEref is the value of LE at wind speed Uref . The result

for the initial mixed layer humidity is:
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qt,ml(0) = qt,s −
LEref

UrefρLvCD
. (3.15)

The initial free atmosphere humidity is determined by a prescribed initial humidity jump so:

qt,fa(0) = ∆qt(0) + qt,ml(0). (3.16)

The last initial condition we need is the initial inversion height. This one is simply prescribed.
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Chapter 4

Results

Now that the three model equations can be expressed in the three variables we are interested
in, we can try to find a solution for the evolution of θv,ml, zi and qt,ml, given the appropriate
initial conditions. With the evolution of these variables known, the evolution of qsat,top can be
calculated. With the evolution of both qt,ml and qsat,top known, the time after which saturation
(and thus cloud formation) occurs, called ts, can be calculated. Solving the system of equations
analytically is very difficult if not impossible. Therefore the system is solved numerically using
the Euler forward method. The system is solved for several initial values of ∆θ in the range of
1K ≤ ∆θ ≤ 11K and initial values of ∆qt in the range of −qt,ml ≤ ∆qt ≤ 0. Next a contourplot
is made of ts as a function of the initial temperature jump and the initial humidity jump. The
contourplots are based on simulations of 10 hours. What happens after those 10 hours will be
left out of consideration so the conclusion ”no saturation”or ”no cloud formation” means no
saturation or no cloud formation within 10 hours. This procedure is repeated for several values
of the wind speed, of the the large scale divergence and of the the initial iversion height. The
value of the wind speed is varied in the range of 3m/s ≤ U ≤ 15m/s and the value of the
large scale divergence between 0 ≤ D ≤ 1 · 10−5s−1. The range of the values of zi,initial will be
discussed in the next subsection. The other parameters are fixed, their values are given in table
4.1

parameter value

Ts 287K

psurf 1020hPa

A 0.2

LEref 50W/m2

Href 10W/m2

Uref 8m/s

CD 0.001s−1

δT0 3 · 10−6K/m

Table 4.1: The values of the parameters used in this research.
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4.1 The influence of the initial inversion height

The start of the investigation to the influence of the inversion height is to determine for which
values of zi,initial the top of the mixed layer is saturated. This value of zi,initial is called the
critical value and is denoted by zi,crit. As we have seen the initial value of θml is fixed. This
implies that the initial value of qsat,top is a function of zi,initial only. The initial value of qt,ml
is also fixed. In figure 4.1 it can be seen, that the critical value of zi with the parameters and
initial conditions used is zi,crit = 320m.
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Figure 4.1: Contour plot of the critical values of zi as a function of the sea surface temperature
and the relative humidity at the bottom of the mixed layer.

Furthermore values of zi,initial lower than 100m are left out of consideration, because inversion
heights much lower than 100m don’t occur in reality. To illustrate the influence of zi,initial two
contour plots are made. In the plots moderate values are chosen for U and D:



4.1. THE INFLUENCE OF THE INITIAL INVERSION HEIGHT 19

∆θi(K)

∆
q t

,i
(g
/
k
g)

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

9

9
10

10

10

 

 

2 4 6 8 10

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

(a) Contour plot with zi,initial = 100m, U = 8m/s, D = 5 · 10−6s−1 .
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(b) Contour plot with zi,initial = 300m, U = 8m/s, D = 5 · 10−6s−1.

Figure 4.2: Contour plots of ts in hours as a function of the initial values of ∆θ and ∆qt.
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In figure 4.2 it can be seen, that for low initial values of zi cloud formation takes a longer
time than for high initial values. This makes sense because as values of zi get higher the value
of qsat,top gets lower, so for higher values of zi the top of the mixed layer is simply closer to
saturation. A remarkable thing in both plots is the blue region they both have in the lower left
corner. This region occurs in every situation considered. This is because of the low initial value
of ∆θv in that region. Using (3.3) ∆θv can be written as:

∆θv = (∆θ + θml) (1 + 0.61qt,fa)− θml (1 + 0.61qt,ml) . (4.1)

Now ∆θv can be calculated for a point inside the region. The initial value of θml is θml = 287.6K.
If the initial values of ∆θ and ∆qt are ∆θ = 1K and ∆qt = −7.0g/kg ∆θ is very small compared
to θml so:

∆θv ≈ ∆θ + θml(1 + 0.61qt,fa − 1− 0.61qt,ml) = ∆θ + 0.61θml∆qt. (4.2)

This means that the initial value of ∆θv under these circumstances is ∆θv ≈ −0.23K. In this
case the entrainment rate would be negative. This makes the mixed layer model invalid in
these situations. Also when values of ∆θv get much lower than 1K problems occur because of
unrealistically high entrainment rates. Another remarkable thing is the sharp transition in figure
4.2(b) between the region on the left, where no clouds form, and the region on the right where
cloud formation goes very quickly. The explanation of this will be given with help of figure 4.3.
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Figure 4.3: The evolution of qt,ml and qsat,top with zi,initial = 300m, U = 8m/s and D =
5 · 10−6s−1.
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In figure 4.3(a) it can be seen, that the graph qsat,top just doesn’t intersect the graph of qt,ml.
So in this situation no saturation occurs. In figure 4.3(b) the graph of qt,ml does intersect the
graph of qsat,top so that in this situation saturation does occur, although the qt,ml exceeds qsat,top
just a little bit and for a limited period of time so that cloud formation is not to be expected
here. The transition seen in figure 4.2(b) is thus not as sharp as it appears. Furthermore it can

be seen that qt,ml shows a maximum. On this maximum value we have that
dqt,ml

dt = 0. Using

(3.1a) it becomes clear that this implies that w′q′t,top = w′q′t,0. This is illustrated by figure 4.4
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Figure 4.4: The evolution of w′q′t,top and w′q′t,0 with U = 8m/s D = 5 · 10−6s−1 and initial
conditions zi = 300m, ∆θ = 2.3K and ∆qt = −5g/kg.

In the figure it can be seen that the surface flux is more or less constant, while the top flux
increases rapidly. Based on (3.7) one might expect the surface flux to decrease because of the
rising value of qt,ml. The surface flux doesn’t decrease, because the value of qt,s rises. It rises
due to the fact that the surface temperature increases with time, as we have seen in section
3.2. To explain the increase in the top flux we need (3.5) and (3.6), where in (3.5) ψ must be
substituted by qt,ml. Combining those equations we get

w′q′t,top = −A
w′θ′v,0
∆θv

∆qt. (4.3)

To find out which of the three variables on the right hand side is resposible for the increase of
w′q′t,top, they have been plotted as a function of time in figure 4.5.
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Figure 4.5: The evolution of ∆θv, ∆qt and w′θ′v with U = 8m/s, D = 5 · 10−6s−1 and initial
conditions zi = 300m, ∆θv = 2.3K and ∆qt = −5g/kg.

In figure 4.4 it can be seen that w′q′t,top after 10 hours is estimately three times as large as the

initial value. Looking at (4.3) we see that w′q′t,top is proportional to w′θ′v,0 and ∆qt and inversly

proportional to ∆θv. In figure 4.5 it can be seen that, w′θ′v,0 decreases and the absolute value
of ∆qt increases but it increases by less than 10% after 7 hours, to decrease again afterwards.
Those two thus don’t explain the rapid increase of w′q′t,top. The value of ∆θv after 10 hours is

less than the initial value divided by 3. As ∆θv is inversely proportional to w′q′t,top this leads

to the conclusion that the main cause of the rapid increase of w′q′t,top is the decrease of ∆θv.
Earlier in this section it is mentioned that when ∆θv gets much lower than 1K the mixed layer
model may become invalid. This means that in this case the results for periods of more than 3
hours may not be reliable.
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4.2 The influence of the wind speed

In the previous section it is mentioned that only initial inversion height of more than 100m are
considered. For the lowest wind speed considered (3m/s) however an initial inversion height of
at least 180m and absense of the large scale divergence is required to get cloud formation. For a
large scale divergence of D = 5 · 10−6 the minimal initial inversion height required to get clouds
is 230m. To show the infuence of the wind speed at low wind speeds two pairs of contour plots
are made, one pair at zi,initial = 300m and one pair at zi,initial = 250m.
Looking at figure 4.6 in both cases three regions can be identified:

1. A region where no cloud formation occurs (t > 10h).

2. A region where cloud formation ocurs relatively quickly and the contour lines are widely
separated. (t < 4h)

3. An intermediate region where the contour lines are close together.(4h < t < 10h)

It can be seen, that the position and the width of the intermediate region strongly depend on
the wind speed. This is however only the case when the initial inversion height is such that the
top of the mixed layer is almost saturated at the beginning. Figure 4.7 illustrates this.
The figure shows that both qt,ml and qsat,top are in good approximation linear functions of time.
It can be seen, that when the wind speed increases the slope of both qt,ml and qsat,top increases.
The slope of qt,ml increases more than the slope of qsat,top. So the wind causes the difference
between the slope of qt,ml and qsat,top to increase, causing the time before they intersect to
decrease (The intersection points are indicated by the black circles). Figure 4.7(a) corresponds
to a point inside the intermediate region of figure 4.6(a) and figure 4.7(b) corresponds to a
point inside the intermediate region of figure 4.6(b). In figure 4.7(b) it can be seen that a small
increase of the slope of qt,ml with respect to the slope of qsat,top makes that the graphs, which do
not intersect at U = 3m/s do intersect quite soon at U = 4m/s. This explains the large shift in
the position of the intermediate region. To explain the increase of the width as the wind speed
decreases knowledge of the influence of the initial values of ∆θ and ∆qt is required.
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(b) U = 4m/s.

Figure 4.6: Contour plots of ts as a function of the initial values of ∆θ and ∆qt, with zi,initial =
300m and D = 5 · 10−6s−1.
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Figure 4.7: The evolution of qt,ml and qsat,top for U = 3m/s (solid line) and U = 4m/s (dashed
line) with D = 5 · 10−6s−1 and initial conditions zi = 300m and ∆θ = 3K.

In figure 4.8(a) it can be seen, that as the initial moisture jump gets smaller, the slope of qt,ml
gets larger while the slope of qsat,top remains practically the same. Thus as the initial moisture
jump gets smaller, clouds will form sooner. In figure 4.8(b) it can be seen that as the initial
temperature jump increases, the time after which clouds occur decreases. In both subfigures of
figure 4.8 we see that the slope of both qt,ml and qsat,top increases with increasing wind speed.
Because of this the line segments towards the intersection point are longer. This makes a kind of
leverage effect such that an increase of the slope of qt,ml relative to the slope of qsat,top makes the
intersection point move more to the left for higher wind speeds. This is why the transition region
is wider at lower wind speeds. For lower initial inversion heights the graphs of qt,ml and qsat,top
start further separated from each other. This makes that the influence of a relative increase of
the slope of one of the graphs decreases, so that the transition region gets stretched. In figure
4.9 it can be seen that the for an initial inversion height of 250m the transition region gets so
stretched that it in fact the three regions merge.
At higher wind speeds the sensitivity for the wind speed is much less as can be seen in figure
4.10
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Figure 4.8: The evolution of qt and qsat for U = 3m/s (solid line) and U = 4m/s (dashed
line) with D = 5 · 10−6s−1 and initial conditions zi = 300m for various values of ∆qt and ∆θ.
The circles indicate the intersection points of pairs of solid lines and the diamonds indicate the
intersection points of pairs of dashed lines. The arrows indicate the initial value of ∆qt or ∆θ
respectively belonging to the pair of lines it is pointing at.
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Figure 4.9: Contour plots ts as a function of the initial values of ∆θ and ∆qt, with zi,initial =
250m and D = 5 · 10−6s−1.
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Figure 4.10: Contour plots of ts as a function of the initial values of ∆θ and ∆qt, with zi,initial =
300m and D = 5 · 10−6s−1.
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4.3 The influence of the large scale divergence

For the investigation to the influence of the large scale divergence a case similar to the case of
figure 4.7 is used.
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Figure 4.11: The evolution of qt and qsat with U=5m/s and intial conditions zi = 300m, ∆θ = 3K
and ∆qt = −5g/kg

Figure 4.11 shows that when the large scale divergence increases, the slope of the graph of qsat,top
increases relative to the slope of qt,ml. So the large scale divergence has a similar effect on qsat,top
and qt,ml as the windspeed has only the roles are reversed. Under these circumstances the time
after which saturation occurs is thus strongly dependent on the large scale divergence, but the
dependence is not as strong as the dependence on the wind speed.



30 CHAPTER 4. RESULTS



Chapter 5

Conclusion

Looking at the contour plots shown in the previous chapter it can be observed that the time
to reach saturation decreases as the moisture jump decreases. This can be explained looking
at the moisture balance of the mixed layer. At the surface moisture is transported into the
mixed layer causing the humidity to increase. At the top entrainment transports relatively dry
air into the mixed layer causing the humidity to decrease. When the humidity jump at the top
decreases the air entrained into the mixed layer becomes less dry so the decrease of humidity due
to entrainment is less. Thus the humidity of the mixed layer tends to increase as the moisture
jump decreases. Therefore a decrease of the humidity jump will lead to a decrease of the time
after which saturation occurs. Another observation that can be made is that the time to reach
saturation decreases as ∆θ increases. There are two major effects ∆θ has:

1. As ∆θ increases the air entrained into the mixed layer gets warmer.

2. An increase of ∆θ causes the entrainment rate to decrease according to we = Aw′θ′v
∆θ .

The first effect makes that the mixed layer warms up faster causing qsat to increase faster. The
second effect makes that less warm, dry air is entrained into the mixed layer. So the second
effect causes the tendency of the humidity to increase and weakens the first effect because less
air is entrained. In figure 4.8(b) it can be seen that the initial value of ∆θ has a very small effect
on qsat compared to its effect on qt. Thus the second effect almost neutralizes the first one and
thereby causes the entrainment of dry air to decrease. So the net effect of an increase of ∆θ is
that qt increases while qsat remains practically the same. This makes that cloud formation starts
earlier if ∆θ increases. The general effect of the initial inversion height is that the lower it is,
the higher the temperature at the top of the mixed layer. So as the initial inversion height gets
lower, the initial value of qsat,top gets higher, while the initial value of qt,ml remains the same, so
as the initial inversion height gets lower it takes longer before clouds start to form. The effects
of the large scale divergence and the wind speed show a great similarity. They both affect the
slope of the graphs of qsat and qt. the divergence has the strongest effect on qsat and the wind
speed on qt. This explains their effect on the time after which saturation occurs. Their effect on
this time is strongly dependent on the initial inversion height. Because both the divergence and
the wind speed affect the slope of qsat and qt their influence on the time after which saturation
occurs also depends on each other because of the leverage effect discussed in section 4.2. A
remarkable effect is seen in figure 4.3. In this situation it is not really clear whether cloud
formation will occur. The air gets saturated, but just a little saturation may not be enough to
get cloud formation. Here the questions rise how much must qt exceed qsat to make the model
used in this thesis invalid due to cloud formation and what will happen in that case? This could
be topic of further study.
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Appendix A

Validation

A.1 The Nieuwstadt Case

If the subsidence is neglected and the surface heat flux is taken constant ∆θ can be written in
terms of zi and Γθ. This is done in Nieuwstadt (1992). A quick derivation is given below. We
start with (3.1a) and (3.1c). In abscense of subsidence and using (3.6) we get:

dθv,ml
dt

=
(A+ 1)w′θ′v

zi
(A.1a)

dzi
dt

=
Aw′θ′v
∆θv

(A.1b)

To obtain another equation for ∆θ the temperature profile of the free atmosphere, θv,fa =
θv,ml + ∆θ + Γθ (zi (0)− zi) is differentiated. Because there is no turbulence in free atmosphere

the turbulent heat flux w′θ′v is zero, so using (2.19) we get
dθfa
dt = 0 so

d∆θv
dt

=
d∆θv
dzi

dzi
dt

= Γθ
dzi
dt
− dθv,ml

dt
(A.2)

Substitution of both equations of (A.1) into (A.2) gives:

d∆θv
dt

= Γθ +
1 +A

A

∆θv
zi

(A.3)

The solution of this equation is:

∆θv =
A

1 + 2A
Γθzi + Cz

− 1+A
A

i (A.4)

Where C is a constant dependent on the initial inversion height zi (0) and the initial temperature
jump ∆θ (0). This leads to the following expression:

∆θv =
A

1 + 2A
Γθzi +

(
∆θv (0)− A

1 + 2A
Γθzi (0)

)(
zi (0)

zi

) 1+A
A

(A.5)

Now it can be checked whether the results of the program correspond to this equation. This is
done in the figure below:
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Figure A.1: Comparison of the evolution of ∆θ according to the program with the analytical
result of Nieuwstadt (1992)

A.2 Another analytical solution

The second relationship that has been derived is based on the assumption that Γθ = 0. The
derivation also starts with (3.1a) and (3.1c). Combining the two equations gives:

dzi
dt

=
A

A+ 1

zi
∆θv

dθv,ml
dt

−Dzi (A.6)

With the fact that Γθ = 0 we have that ∆θv = θv,fa − θv,ml, where θv,fa is constant. So
d∆θv = −dθv,ml. Thus (A.6) can be rewritten to:

1

zi

dzi
dt

= − A

A+ 1

1

∆θv

d∆θv
dt
−D (A.7)

The solution of this equation is:

ln |zi| = −
A

A+ 1
ln |∆θv| −Dt+ C0 (A.8)

Knowing that at t = 0 zi = zi (0) and ∆θv = ∆θv (0) this can be written as:

ln |zi| = −
A

A+ 1
ln
|∆θv|
|∆θv (0)| −Dt (A.9)

With the fact that zi > 0 and ∆θv > 0 we have:
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zi = zi (0)

(
∆θv

∆θv (0)

)− A
A+1

e−Dt (A.10)

This analytical result is compared with the result of the program in the figure below.
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Figure A.2: Comparison of the evolution of ∆θ according to the program with the analytical
result


