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1
INTRODUCTION

1.1. MOTIVATION - WIND PREDICTION

In the past few years, energy production from renewable resources such as wind have become increasingly
important. As the power output of the wind turbines is dependent on the wind speed, good weather and wind
predictions are vital to plan overall energy production. At this time, weather models with a spatial resolution
of ≈ 10 km are used for this purpose. However, turbulent eddies in the atmosphere are typical much smaller
than this grid size, and are not explicitly calculated in the models. These turbulent effects are important in the
local wind strength and profile, and incorporating them in a local model might therefore be very beneficial
for accurately the predicting of power output of wind farms.

Large Eddy Simulation (LES) is a way to take the turbulent eddies into account and therefore provide accurate
wind predictions on a small scale. However in stable atmospheric conditions, for instance during the night or
on cold winter days, LES results can be unreliable. Why is this problematic for the wind prediction for wind
farms? In stable atmospheric conditions there is little vertical mixing in the atmosphere, in which a local wind
maximum, called the nocturnal jet, can be formed. Figure 1.1 shows the horizontal wind speed from two high
resolution LES runs, in which a nocturnal jets are formed.
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Figure 1.1: Nocturnal jet in stable atmospheric conditions, as produced in two LES simulations with a different resolution

Because of the vertical gradient in the wind speed and the formation of the nocturnal jet, small errors in the
LES results can lead to big differences in predicted wind speed at the height of wind turbines, typically 80

1



2 1. INTRODUCTION

m. Figure 1.1 shows the results of the same situation, but simulated at two different resolutions. It is clear
that the predicted wind speed at 80 m differs substantially. In this thesis the reason behind the unreliability
of LES modelling in stable conditions will be researched, as well as proposed changes to improve the LES
framework.

1.2. LES MODELLING OF THE ATMOSPHERIC BOUNDARY LAYER

LES is a way to take local turbulent effects into account when modelling the evolution temperature, velocity
and pressure in the atmosphere. The computational domain is divided in a grid. At each grid point, the
filtered Navier-Stokes equations are numerically solved. In this way, the larger, energy containing eddies are
explicitly calculated, or resolved. Motions smaller than the grid size are parametrized and enter the equations
as subgrid fluxes. Several methods exist to do this parametrization, in this thesis the prognostic TKE equation
will be examined.

The correct functioning of the LES model depends on the size of the grid compared to the size of the energy
containing eddies. When the size of the grid is smaller than the size of the eddies, the important turbulent
motions will be resolved and the LES model will yield usable results. If the energy containing eddies are
smaller than the applied grid size, the solution is subgrid dominated. The solutions of the LES model will
then not depend on the filtered Navier-Stokes equations themselves, but rather on parametrizations of the
motions.
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k( 1
m )

E
(J

)

(a) Unstable atmosphere
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Resolved Subgrid

k( 1
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E
(J

)
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Figure 1.2: The difference in turbulent kinetic energy in the atmosphere between stable and unstable atmospheric con-
ditions, compared to LES grid size.

For modelling the atmospheric boundary layer, this proves a challenge as the size of the energy containing
eddies can vary a lot depending on the conditions. For a sunny day with a lot of cloud formation, a grid size of
50 m suffices to capture the important behaviour, while a stable boundary layer in a cold winter night would
need grid sizes of around 10 m, according to [1]. Figure 1.2 illustrates the situation when LES simulation is
done using the same grid size in the two different situations.

As will be shown in this thesis, subgrid dominated solutions suffer from serious problems, yielding unreli-
able answers. Solutions do not follow experimental results, and are not robust to - for instance - changes in
the grid resolutions. This of course no desirable outcome. One possible solution would be to vary the grid
resolution with the stability of the atmosphere, in order to always resolve the most important turbulent mo-
tions. For practical reasons, this is not a useful solution: this implies a two step process in order to do useful
simulations.

In this thesis the behaviour of subgrid dominated LES results will be researched, as well as several options
to improve the results of LES models in stable atmospheric conditions. One of the most important ideas is
described by Sullivan et al. [2], which will be the main focus point of this thesis.
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1.3. DALES

The Dutch Atmospheric Large Eddy Simulation (DALES), described by Heus et al. [3], is a LES model developed
and extensively used by researchers from Delft University of Technology, Wageningen University, Utrecht
University and the Royal Netherlands Meteorological Institute, all based in the Netherlands. It formed the
basis of the GPU version (GALES) of the original code, which Schalkwijk [4] used to perform high resolution
weather forecasts for the entire Netherlands. The original code of DALES version 4.0 will be used and adapted
to test several improvements of the LES model, in order to produce more reliable results in stable atmospheric
conditions.

1.4. OUTLINE

In the Chapter 2 LES Framework, the important equations behind the LES code used in DALES will be ex-
plained as well as the Monin-Obukhov similarity theory which is used to assess the results. The Chapter 3 will
describe the GABLS case on which the different models will be tested. Chapter 4 will show how the original
code of DALES performs in modelling the stable boundary, and where it fails. In Chapter 5 will be a derivation
and explanation of the model proposed by Sullivan et al. [2] and some adaptions. The Chapter 6 will discuss
the performance of the new model. In the Chapter 7 the drawbacks and advantages of the different alterna-
tives will be compared. Finally, an outlook into further research directions will be given. In the Appendices,
results from all simulations will given in order to provide a complete view of the different models.





2
LES FRAMEWORK

In this chapter first a theoretical background will be given for the LES framework, and in particular the clo-
sure model used in DALES, called the prognostic subgrid TKE equation. Secondly the similarity theory of
Monin and Obukhov [5] will be introduced, a empirical scaling theory with which the LES results will be com-
pared. As explained in the Introduction, subgrid dominated LES solutions do not agree with these empirical
results.

As different authors use quite different notation for equations, the notation used in this thesis will be in-
troduced first. Every explicitly calculated quantity x (e.g. velocity ui and potential temperature θv ) can be
written as the sum of the filtered (x̃) and the fluctuating (x ′) part. The filtered quantities will be resolved by
the model, while the fluctuations are not.

x = x̃ +x ′ (2.1)

The values of x̃ are known at grid cells, the values x ′ are not. The filtered equations will include a filtered
product of two terms x̃ ′y ′. The following notation will be used:

x̃ y = x̃ ỹ + x̃ ′y ′ (2.2)

As only x̃ and ỹ are explicitly calculated in the LES framework, the quantity x̃ ′y ′ is not known and must
therefore be parameterized.

Often filtered quantities are averaged over the whole horizontal domain, this is denoted by 〈x̃〉 and called the
slab averaged value. Usually this is done for producing statistics, however, the Sullivan model depends heavily
on the slab avering operation. The usual rules for averaging are valid: 〈x + y〉 = 〈x〉+ 〈y〉 and 〈C x〉 = C〈x〉,
where x and y are resolved quantities and C is a constant.

2.1. THE LES EQUATIONS

The LES equations can be derived from the Navier-Stokes equations using filtering and applying the Boussi-
nesq approximation. An elaborate derivation can be found in Wyngaard [6]. The LES equations used in the
DALES code are given by:

∂ũi

∂t
+ ∂ũ j ũi

∂x j
=− ∂π̃

∂xi
+ θ̃v

θ0
gδi 3 −

∂τi j

∂x j
+Fi (2.3)

∂θ̃v

∂t
+ ∂ũ j θ̃v

∂x j
=−

∂�u′
jθ

′
v

∂x j
(2.4)

In this set of equations - and of course, in the remainder of the thesis - the symbols t , ui , δi j and xi have their

usual meaning. The term π is the modified pressure, given by π̃ = p̃
ρ0

+ 2
3 e. The term ρ0 is the atmospheric

5



6 2. LES FRAMEWORK

reference density, p is the pressure and e is the subgrid turbulent kinetic energy, or subgrid TKE. This is given
by:

e = 1

2
�u′

i u′
i (2.5)

θv is the virtual potential temperature, the theoretical potential temperature of dry air with the same density
as moist air. The potential temperature is the temperature which an air parcel would have if brought adiabat-
ically brought to the reference pressure. Further information can be found in, for instance, the book of Stull
[7]. The following relation holds:

θ′v
〈θ̃v 〉

= −ρ′

〈ρ̃〉 (2.6)

The physical interpretation of this quantity is as follows: if an air parcel has a higher θv than its surroundings,
it experiences a buoyancy force upwards and visa versa. A precise definition and formula can be found in
Heus et al. [3]. The term τi j is called the deviatoric subgrid stress tensor, and is given by:

τi j = �u′
i u′

j −
2

3
eδi j (2.7)

Finally, the term Fi is a combination of other body forces on the atmosphere, such as the Coriolis force. By
numerically integrating the equations 2.3 and 2.4 in time, values for ũi and θ̃v can be calculated, provided

that e, τi j and �u′
jθ

′
v are known. This is called the closure problem. In the prognostic subgrid TKE model, a

third equation is solved for the subgrid TKE e. The subgrid TKE combined with a length scale λ are used to

parametrize the subgrid shear τi j and subgrid buoyancy flux �u′
jθ

′
v .

2.1.1. PARAMETRIZATION AND THE PROGNOSTIC TKE EQUATION

One of the unknown variables needed to solve the LES equations, is the turbulent kinetic energy e = 1/2�u′
i u′

i .
This is the difference between the filtered total kinetic energy 1/2�ui ui and the kinetic energy of the filtered
velocity field 1/2ũi ũi . The TKE equation used in DALES is:

∂e

∂t︸︷︷︸
I

+ ũ j
∂e

∂x j︸ ︷︷ ︸
I I

=
�w ′θ′v
θ0

g︸ ︷︷ ︸
Pb

−τi j
∂ũi

∂x j︸ ︷︷ ︸
Ps

−
�∂π′u′

j

∂x j︸ ︷︷ ︸
I I I

−
∂�e ′u′

j

∂x j︸ ︷︷ ︸
IV

−ε (2.8)

The first term (I ) on the left hand side is the storage of subgrid TKE and the second term (I I ) is the advection
of subgrid TKE by the resolved flow: together they form the material derivative of TKE. The term Pb on the
right hand side is TKE production/destruction due to variations in θv . The term Ps is production of TKE by
turbulent shear. The term I I I is the transport of TKE by pressure fluctuation. The term IV is transport of TKE
due to fluctuations of TKE. The final term ε is dissipation of subgrid TKE by viscous processes.

Because only the filtered quantities are calculated in the LES modelling, both the LES and the TKE equa-

tion contain some unknown quantities, which include the terms �u′
i u′

j , �θ′v u′
j or �π′u′

j . These need to be

parametrized, using known variables. The following parametrizations are used:

τi j =−Km
(∂ũi

∂x j
+ ∂ũ j

∂xi

)=−2KmSi j (2.9)

�θ′v u′
j =−Kh

∂θ̃v

∂x j
≡−Kh

θ0

g
N 2 (2.10)

�π′u′
j +�e ′u′

j =−Km
∂e

∂x j
(2.11)

With these parametrizations, all unknown terms can be expressed in filtered quantities, which are explicitly

calculated. The quantity N =
√

g
θ0

∂θ̃v
∂z is called the Brunt-Väisälä frequency, which is to the frequency of an
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air parcel oscillating due to θv differences. The only thing necessary for closure is then a formula for the Km

and the Kh and the dissipation ε. In DALES, all these terms are expressed in terms of the TKE:

Km = cmλ
p

e (2.12)

Kh = chλ
p

e (2.13)

ε= cε
λ

e3/2 (2.14)

In these equations cm is a model constant which follow from theory and λ is a typical length scale for the
turbulent eddies, for which two options exist in the DALES code. The length scale is either defined by λ=∆=
(∆x∆y∆z)1/3, were ∆x, y, z are the grid spacings, or:

λ= min(∆,cn

p
e

N
) (2.15)

In this equation, cn = 0.76. The term cne/N is the Deardorff length scale ([8]), which is the length a air parcel
with given energy can travel before all the kinetic energy is transferred to potential energy. The constants ch

and cε are given by:

ch = (ch,1 + ch,2
λ

∆
)cm (2.16)

cε = cε,1 + cε,2
λ

∆
(2.17)

The ch ,1,2 and cε,1,2 are constants in the DALES code. Implementing the parametrisations of Formula 2.9,
2.10 and 2.11 in the subgrid TKE equations (2.8) yields the following model:

∂e1/2

∂t
+ ũ j

∂e1/2

∂x j
= 1

2e1/2
(−Kh N 2︸ ︷︷ ︸

Pb

+KmS2︸ ︷︷ ︸
Ps

)+Km
∂e1/2

∂x j
− cεe

2λ
(2.18)

In this equation, S2 = 2
∑

i , j Si j Si j . The derivation of this formula can be found in Appendix A. All the numer-
ical values of the subgrid constants can be found in Heus et al. [3].

2.1.2. DISCRETIZATION OF THE EQUATIONS

The DALES code is discretized using a Awakara-C grid, which is given in Figure 2.1. The velocity components
u, v and w are defined at the cell faces, while the pressure, subgrid TKE and other scalar quantities are located
in the cell center.

It is clear from Figure 2.1 that the velocity components u, v, w are defined at different points in the grid struc-
ture, which influences the implementation of the Sullivan based models and boundary conditions at ground
level. Figure 2.2 contains an schematic drawing of the lowest grid levels:
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w̃(i,j,k)

w̃(i,j,k+1)

ṽ(i,j+1,k)

ṽ(i,j,k)

ũ(i,j,k) ũ(i+1,j,k)

∆z

∆x

∆y

ψ(i,j,k)

Figure 2.1: Definition of the grid used in DALES, ψ= {e, p̃, θ̃v }

1st "half level"(w(k=1)=0)

1st "full level"(u(k = 1), v(k = 1),e(k = 1))

2nd "half level"(w(k=2))

z=0

z =∆z/2

z =∆z

Figure 2.2: Surface boundary in the DALES framework

2.2. SIMILARITY RELATIONS

Much research has been done in non-dimensional relation to describe the parametrisation of turbulent fluxes
in the atmosphere. Monin and Obukhov [5] introduced the usage of non-dimensional forms of the wind
gradient and the temperature gradient, also called stability or similarity functions, given by:

φm = κz

u∗
∂Uh

∂z
(2.19)

φh =−κzu∗
wθv

∂θv

∂z
(2.20)

In this equation, φm and φh are the similarity functions, κ = 0.4 is the Von Kárman constant, Uh =
p

u2 + v2

is the horizontal wind velocity and u∗ and w ′θ′v are respectively the friction velocity and the total buoyancy
flux. The friction velocity is given by:

u∗ = 4
√

uw2 + v w2 (2.21)

In this equation u′w ′ indicates the total uw momentum flux. The bar x is used to indicate that these quan-
tities are not LES specific: they can be measured. This has been done by among others Businger et al. [9]. In
this thesis, we use the local scaling theory following Baas et al. [10] and introduced by Nieuwstadt [11]. The
measurements en theory suggest that the similarity functions φm and φh both follow the following relation
in the stable boundary layer:

φ= 1+α z

Λ
(2.22)
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In this equation, α is a constant, found to be approximately 5 by Businger et al. [9] and Λ is the local Monin-
Obukhov length and is given by:

Λ= −(u∗)3

κ
g
θ0

wθv

(2.23)

What exactly defines a stable or unstable boundary layer? This depends on the amount and sign of the shear
and the buoyancy term, combined in the gradient Richardson number, here expressed in the LES terms (Gar-
ratt [12]):

Rig = N 2

S2 =
g
θ0

∂θ̃v
∂z(

∂ũ
∂z

)2 +
(
∂ṽ
∂z

)2 (2.24)

Rig is negative in an unstable boundary layer: the buoyancy force then accelerates rising air parcels, pro-
ducing turbulent eddies and the buoyancy term in the subgrid TKE equation produces TKE. Rig is positive
in an stable boundary layer: the buoyancy force then decelerates rising air parcels and so destroys turbulent
eddies, the buoyancy term in the TKE equations also destroys subgrid TKE. If the Rig > Ricritical ≈ 0.3, then
the atmosphere changes from turbulent to laminar.

2.2.1. SIMILARITY FUNCTIONS IN SUBGRID DOMINATED DALES SOLUTIONS

If the DALES solution is dominated by the subgrid, the Monin Obukhov functions can be evaluated theoreti-
cal. It this case, the total momentum and buoyancy flux only consist of subgrid fluxes:

u∗ =
4
√

u′w ′2 + v ′w ′2 = 4
√
τ2

uw +τ2
v w

w ′θ′v = �w ′θ′v

The buoyancy flux can be rewritten using the parametrizations from Formula 2.10:�w ′θ′v
u∗ =−Kh

u∗
∂θ̃v

∂z
(2.25)

For rewriting u∗, some more assumptions are necessary. Substituting the parametrization from Formula 2.9
and assuming a horizontally homogeneous solution yields:

u∗ = 4
√
τ2

uw +τ2
v w = 4

√√√√√K 2
m

(
∂ũ

∂z
+ ∂w̃

∂x

)2

+
(
∂ṽ

∂z
+ ∂w̃

∂y

)2
= K

1
2

m

√
∂Uh

∂z
(2.26)

The second equality follows because ∂
∂x,y are zero if the solution is homogeneous. Moreover, w̃ = 0 if there are

no resolved fluctuations. By dividing the similarity functions from Formulas 2.19 and 2.20, and substituting
the previous results:

φh

φm
=

−κzu∗�w ′θ′v
∂θ̃v
∂z

κz
u∗

∂Uh
∂z

= Km
∂Us
∂z

∂θ̃v
∂z

Kh
∂θ̃v
∂z

∂Uh
∂z

= Km

Kh
≡ Prt (2.27)

The number Prt is called the turbulent Prandtl number, and is found to be 1 by Businger et al. [9]. From
substituting the definitions of Km,h , Formulas 2.12 and 2.13, the expression can be rewritten to:

Prt = cm

ch
= cm(

ch,1 + ch,2
λ
∆

)
cm

= 1

ch,1 + ch,2
λ
∆

(2.28)

Substituting the definition of ch from Formula 2.16 leads to the second equality. Apparently, in a subgrid
dominated DALES solution, the turbulent Prandtl number and the ratio between φm and φh depend on the
exact values of ch,1 and ch,2 and the chosen value for the length scale λ. As ch,1 = 1, the turbulent Prandtl
number can only be set to 1 in the subgrid dominated solution if ch,2 is chosen to be zero.
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2.2.2. MONIN OBUKHOV OBEYING LENGTH SCALE

The previous section shows that constants in the DALES code directly influence the behaviour of the Monin
Obukhov stability functions in case of subgrid dominated solutions. One of the parameters in the LES frame-
work is the length scale λ, associated with a typical eddy size. How should λ be chosen such that the subgrid
dominated DALES solution follows Monin Obukhov? The following derivations up to 2.34 follows the article
of Duynkerke and Roode [13]. First, the Monin Obukhov function for momentum φh , Formula 2.20 needs to
be rewritten in terms of non-dimensional quantities:

φm ≡ κz

u∗
∂Uh

∂z
= κzu2∗

u3∗

∂Uh

∂z
= Km

Kh N 2

(
∂Uh

∂z

)2
z

Λ
(2.29)

In the third step, two substitutions are done. First, from the definition of the Monin Obukhov length in For-
mula 2.23 follows that:

u3∗
κ

=−Λ g

θ0

�w ′θ′v =ΛKh N 2

In the second equivalence the parameterization in DALES (Formula 2.10) is used. The final step is substitut-
ing the approximation made in Formula 2.26 for the definition of u∗. In order to simplify 2.29 even more,
some assumptions are made. If there is no vertical resolved velocity w̃ , and the velocity field is horizontally
homogeneous, then:

S2 ≡ 2
∑
i , j

S2
i j =

(∂ũ

∂z

)2 + (∂ṽ

∂z

)2 =
∣∣∣∣∣∂Uh

∂z

∣∣∣∣∣
2

(2.30)

Using this result, the definitions of the gradient Richardson number Rig = N 2

S2 and the turbulent Prandtl num-

ber Prt = Km
Kh

provides the following result:

φm = Prt

Rig

z

Λ
(2.31)

In order to arrive at the length scale λ, it is easiest to derive the Km which would obey the Monin-Obukhov
theory and compare this with the actual formulation in the DALES code from Formula 2.12. Combining the
definition of φm in Formula 2.29 (first equality) with the result of Formula 2.26 results in:

φm = κzp
Km

∣∣∣∣∣∂Uh

∂z

∣∣∣∣∣
1/2

⇐⇒ Km = (κz)2

φ2
m

∣∣∣∣∣∂Uh

∂z

∣∣∣∣∣ (2.32)

If the result from Equation 2.31 is now combined with the observed functions for φm from Formula 2.22, it
follows that

φm = 1

1−αRig

Prt

(2.33)

Combining the last two results, Km should obey the following relation to produce correct results in the stable
atmospheric conditions:

Km = (κz)2(1−αRig

Prt
)2

∣∣∣∣∣∂Uh

∂z

∣∣∣∣∣ (2.34)

In order to determine the correct length scale λ, now an expression is needed for the resulting Km from
DALES. If a steady state is assumed, together with a no transport of TKE Equation 2.18 can be rewritten to
the well known subgrid model by Smagorinsky [14]:

0 = 1

2
λ
(
cmS2 − ch N 2)− cεe

λ
= 1

2
λS2(cm − chRig

)− cεe

λ
(2.35)

Substituting the definitions of ch = ch,1, which corresponds with the suggestion of the previous section, this
yields for the subgrid TKE e and subsequently for Km :

e =cm

cε

(
1− ch,1Ri gg

)
λ2S2 (2.36)

Km ≡ cm
p

eλ= c3/2
m

c1/2
ε

(
1− ch,1Rig

)1/2
λ2S (2.37)
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The constant cs
c3/2

m

c1/2
ε

is the Smagorinsky constant. In order to let the DALES Kh obey the experimental Monin

Obukhov results, λ must be chosen in such a way that Equations 2.37 equals 2.34. As S =
∣∣∣ ∂Uh
∂z

∣∣∣, and Prt = 1

for the stable case, the resulting λ equals:

λMO = κz

c2
s

1−αRig(
1− ch,1Rig

)1/4
(2.38)

It is useful to look graphically at this result. In Figure 2.3a is the resulting λMO plotted for several values of
Rig , and in Figure 2.3b is the λMO/z plotted versus Richardson. Usually λ = ∆ is chosen as length scale. If
then, at a certain height, ∆ > λMO , this will result in too much eddy diffusion, as Km,h scales with ∆. From
Figure 2.3b, the dashed line, can be deduced that this results in to much mixing for z <∆/2, regardless of the
Richardson number. At larger heights, for z =∆ for instance, depending on the Richardson number there can
still be too much mixing. When using anisotropic grids, this poses a problem. Results will be presented for a
run with ∆x = ∆y = 200 and ∆z = 6.25, yielding ∆ = 60 m. For this run, there will be too much mixing up to
30m, and even higher depending on the Richardson number. The next section will show that this is indeed
the case.
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0 5 ·10−2 0.1 0.15 0.2

0

0.5

1

1.5

2
z =∆/2

Too much mixing

Rig

∆
/z

(b) The dimensionless length λMO /z versus Rig .

Figure 2.3: Graphical representation of the λMO length scale.





3
THE GABLS CASE

In order to evaluate the output of DALES, the GABLS case is used. This is a case based on Arctic observations
by Kosovic and Curry [15] of the stable boundary layer, used in an intercomparison study by Beare et al. [1] of
LES models as a part of the GEWEX Atmospheric Boundary Layer Study (GABLS).
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(a) Surface wind profile
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(b) θv profile

Figure 3.1: GABLS case profiles, quasi steady state after 9 hours . The profiles are slab averages over the complete hori-
zontal domain, and are time averaged over 10 minutes.

The case is a simulation of an arctic night lasting 9 hours at a latitude 72 ◦ N. The initial wind profile is set
equal to 8 m/s in the x-direction, the initial θv profile is constant 265 K up to 100 m, above it has a slight
slope of 0.01 K /m. The initial surface temperature is 263.5 K , and decreases with 0.25 K /h. In Figure 3.1 are
the resulting quasi steady state profiles after 9 hours from a high resolution DALES run (∆x = 3.125m). These
results are in agreement with the various results of LES models which participated in the inter comparison
study by Beare et al. [1] and will therefore be used as reference, indicated by high resolution run or Hres DALES.
The plots are averaged over 10 minutes and the horizontal domain of 400 × 400 m2. Around the height of 200
m, a nocturnal jet is formed: a local maximum in the geostrophic wind. This happens at the location where
∂θv
∂z is at its maximum. This height is also called the boundary layer height or inversion.
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4
RESULTS OF DALES

Although the previous chapter shows that the high resolution version of DALES yields results for the stable
GABLS case which agree with other LES models, these results depend on the horizontal resolution. As an
illustration, the resulting horizontal wind profiles are plotted for 7 DALES runs in Figure 4.1a of the GABLS
case. In each run, the total number of grid cells is 643, but the total horizontal domain is doubled between
runs. Effectively, the horizontal grid cell size is therefore doubled each new run. All simulation are performed
on the Cirrus cluster of the TU Delft, using 8 processor cores. Always 643 grid points were used, except 1 when
the vertical grid size ∆z was changed in Section 4.2. In order to give exact information on which options of
DALES were used, a typical inputfile (NAMoptions) is included in the Appendix C. All the results presented
are averaged of the horizontal domain and a time period of 10 minutes, and consist of the last 10 minutes of
the GABLS simulation.
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(a) Surface wind velocity for several horizontal grid sizes
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(b) Height of the nocturnal jet versus the horizontal grid size

Figure 4.1: DALES results for the stable boundary layer. Note that the Hres DALES solution has a horizontal grid spacing
of 3.125 m.

Figure 4.1a shows that the results of the DALES code for this stable case is very dependent on the horizontal
grid resolution. Figure 4.1b shows how the height of the nocturnal jet depends on the horizontal grid size.
Why do the results of DALES in the stable case depend so much upon the horizontal grid resolution? In
Figure 4.2 the TKE profiles are plotted for the high resolution situation (∆x = ∆y = 3.125m) and for the run
with the lowest resolution ( ∆x = ∆y = 200 m). The TKE is divided in resolved, subgrid and total, with the

1In the final week for the deadline of this thesis, a numerical error was found in the boundary layer conditions of the original DALES
code. The four runs with∆x = 6.25m -∆x = 50m were redone with an improved version of the code. More information is in Appendix D

15
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following definitions:

T K Esubg r i d =∑
i
〈�ui ui − ũi ũi 〉 ≡ e

T K Er esol ved =∑
i
〈(ũi −〈ũi 〉)(ũi −〈ũi 〉)〉

T K Etot al = T K Esubg r i d +T K Er esol ved

Two big differences are visible between the TKE profiles. First, the total TKE in the∆x = 200 m run differs two
orders of magnitude from the high resolution run. Apparently, the TKE scales with the horizontal grid size for
the stable case. Secondly, in the run with ∆x = 200 m the TKE consists completely of subgrid TKE, while the
resolved TKE is dominant in the high resolution run. From the complete results of the other runs, Appendix
F.1, all runs with ∆x ≥ 6.25 m are dominated by the subgrid.
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(a) Hres DALES, ∆x = 3.125 m
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(b) ∆x = 200 m

Figure 4.2: Vertical distribution of turbulent kinetic energy for two DALES simulations of the GABLS case

4.0.3. RELATION HORIZONTAL GRID SIZE AND SUBGRID TKE

Can these difference be understood from looking at the formulation of the DALES equations? For the subgrid
dominated case, results show that transport can be neglected and the results appear to be steady state, hor-
izontally homogeneous solutions with w̃ = 0 for the subgrid TKE. With these simplifications, Equation 2.18
reduces to:

0 = 1

2e1/2

(
−Kh N 2 +KmS2 − cεe3/2

λ

)
(4.1)

It is now important to remember that both ch and cε also depend on the grid size because of a term λ/∆. For
the length scale λ are two possibilities in the DALES code: λ=∆ or λ= min

(
∆,cn

p
e/N

)
.

Very stable conditions: λ= cn

p
e

N By implementing the definition of λ and Km,h the Expression 4.1 can be
written as:

0 =−
(

ch,1 + ch,2
cn

p
e

N∆

)
cmcneN + cmcne

S2

N
−

(
cε,1 + cε,2

cn
p

e

N∆

)
eN

cn
(4.2)

This equation can be simplified by dividing by cncm Ne, and using that Rig = N 2/S2:

0 =−
(

ch,1 + ch,2
cn

p
e

N∆

)
+ 1

Rig
−

(
cε,1 + cε,2

cn
p

e

N∆

)
1

cmc2
n

(4.3)
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Solving this equation for e gives:

e =∆2Rig S2

 cm cn
Rig

− ch,1cmcn − cε,1
cn

ch,2cmc2
n + cε,2


2

(4.4)

It is clear from this equation, that when λ = cne/N < ∆, the resulting steady state subgrid TKE scales
with ∆2, given a a certain S2 and Rig . This is indeed what is found in the qualitatively simulations:
higher subgrid TKE if ∆ is larger.

Moderate stable conditions: λ=∆ Also for moderate stable conditions, whenλ=∆> cne/N , this derivation
can be done. Rewriting Equation 4.1 and substituting the definitions for Km,h from Formula 2.12 and
2.13 and λ=∆ and solving for e yields:

e = ∆2

2cε

(
−ch N 2 + cmS2

)
(4.5)

As cε and ch do not depend on ∆ anymore, because of the term λ/∆ in Equations 2.17 and 2.16. It is
clear that also in this case the subgrid TKE grows with the ∆2.

This explains the bigger sub grid TKE, but also the changing profiles: because of the dominance of the sub-

grid, the
∂τi j

∂xi
term is the most important term in the LES equation for momentum. As the Km is big compared

to the high resolution case, the Uh profiles will be less steep and therefore apparently the nocturnal jet will
also be located higher in the atmosphere. This assumption will be verified in the next Section 4.0.4.

This result coincides with the theoretical derivation of the λMO in Section 2.2.2. Here it was indicated that the
length scale λ = ∆ results in a Km,h which is too big at the lower levels of the atmosphere. This results again
in two much mixing. Furthermore, from Figure 2.3a2 can be seen that, given a certain Richardson number,
this effect is stronger for larger ∆. Figure 4.1a shows that the slope of Uh is indeed larger in the lower level for
bigger ∆x, if the simulation is subgrid dominated.

4.0.4. NOCTURNAL JET HEIGHT AND MONIN OBUKHOV THEORY

A second important aspect of the resulting profiles is whether they obey the Monin-Obukhov similarity the-
ory. For the two extreme grid sizes, the results are plotted in Figure 4.3. The high resolution results seem to
follow the Monin-Obukhov, although both φm and φh are slightly less steep than the required 1+5z/Λ and
Pr =φm/φh 6= 1. The results of the low resolution case do not follow the Monin Obukhov theory: Pr >> 1, and
both similarity functions have a slope which is lower than required. The first observation can be understood
from the derivation in Section 2.2.1, which resulted in:

φh

φm
= Prt = 1

ch,1 + ch,2
λ
∆

(4.6)

As λ=∆ in this case, the and ch,1 = 1, ch,2 = 2 ([3]), it should follow from DALES results that φh
φm

= 1
3 . Figure 4.3

shows that this is exactly what happens when the DALES solution becomes subgrid dominated, here shown
for ∆x = 200 m.

In the previous section the link was described between the subgrid TKE and the Kh , resulting in a lower ∂Uh
∂z .

Beside a wrong turbulent Prandtl number, Figure 4.3 shows also that the φm and φh are also less steep for
large ∆x. This is also the case for other simulations, these plots are in Appendix F.1. Using the derivations
from Section 2.2.1 it is possible to test what the influence is of the slope in the Monin Obukhov similarity
function to the height of the nocturnal jet, by using a simple 1D model. The exact derivation can be found in

2The Richardson number are plotted as reference in Figure 4.5.
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Figure 4.3: Monin-Obukhov similarity functions for the DALES results of the GABLS case

Appendix B, the model consists of numerical integrating the simplified LES equations given by:

∂u

∂t
= f v − f vg eo − ∂

∂w

(
−Km

∂u

∂z

)
∂v

∂t
=− f u + f ug eo − ∂

∂w

(
−Km

∂v

∂z

)
∂θv

∂t
=− ∂

∂z

(
−Kh

∂θv

∂z

) (4.7)

In this equation, f is the Coriolis parameter (Appendix B) and Km,h are given by 2.34, such that the wind
and θv profiles will follow the Monin Obukhov theory. This model was numerically integrated using the ex-
act same boundary conditions as in the LES simulations, given in Chapter 3. How does this simple model
compare to the high resolution DALES results?
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Figure 4.4: Results of the simple 1D model

From Figure 4.4a it is clear that the simple model captures some characteristics of the high resolution DALES
solution, but the nocturnal jet converges at a different height. Nonetheless, this model could help explaining
how the slope of φm,h results in a different height for the nocturnal jet. For this, the simple 1D model was run
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for several values ofα, in Formula 2.22. This results in different values for Km ,h, and might thus influence the
height of the nocturnal jet. Figure 4.4b shows that this is indeed the case. For a less steep slope of the similarity
functions, therefore a lower α, the nocturnal jet converges at a higher level in the atmosphere.

However, this does not yet completely explain the behaviour of the DALES solutions. In Appendix F.1 can be
seen that the similarity functions of the runs with∆x = 25,50,100 are quite similar, although the nocturnal jet
converges at different heights.

4.0.5. GRADIENT RICHARDSON NUMBERS

As reference are the Richardson numbers plotted for these cases in Figure 4.5, up till the height of the noc-
turnal jet, as the Rig is very unstable above this height. It is clear that only the resolved dominated high
resolution run (∆x = 3.125m) differs from the others: it has bigger Rig numbers in the lower part of the atmo-
sphere. The Richardson number of the other cases are very small in the lower part of the atmosphere.

This results does not agree with the simple 1D model from the previous section. It was argued there that a
lower slope of the Monin Obukhov similarity functions α result in a higher nocturnal jet. This is indeed what
happens in the LES results. However, the slope of the Monin Obukhov function can be written in terms of
Rig , see Formula 2.31 from Chapter 2 given here for easy reference:

φm = Prt

Rig

z

Λ

According to this formula, a lower slope ofφm should coincide with a higher Rig number: the results in Figure
4.5 show that this is not the case. This indicates that the 1D model from the previous section gives a valuable
insight, but the complete explanation is more complicated.
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Figure 4.5: Gradient Richardson number in the GABLS case using DALES with different grid sizes. Agina, Hres DALES
uses ∆x = 3.125.

4.1. TURBULENT PRANDTL NUMBER Prt = 1

The previous section shows that, among other results, the turbulent Prandtl number 1
3 instead of 1 due to the

formulation of the constants ch of formula 2.16. This formulation was introduced by Deardorff [8] to ensure
a correct Prt number in situations with a small subgrid TKE. By removing the dependencies of ∆ from ch

and cε, it is possible to test whether the Prandtl number converges now to the value of 1, as it should. The
constants are now changed to:
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c∗h = ch,1cm

c∗ε = cε,1 + cε,2
(4.8)

In Figure 4.6 are the results of an experiment with this change in subgrid constants, compared to the high
resolution reference and a run with the original DALES code with the same∆x = 12.5 m. Results with different
∆x are presented in Appendix F.2. These results show that the strong dependency of the nocturnal jet of the
grid size is still present, as was to be expected. From the similarity functions however, it is clear that the
Prandtl number is now indeed 1, as φm ≈φh for all simulations.
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Figure 4.6: Results of the DALES run with adapted c∗
ε,h (Formulas 4.8) compared with the high resolution DALES result

and a DALES run with the same ∆x = 12.5 m.

4.2. ANISOTROPIC EDDY DIFFUSIVITIES

Part of the problems of the DALES results with changing grid sizes might be due to the changing aspect ratio
of the grid boxes. In the experiments presented in Figure 4.1a the horizontal grid size is changed from 3.125 m
up to 200 m, while the vertical grid size remains constant at 6.25 m. However, the diffusivities Km,h are based
upon a mean ∆= (∆x∆y∆z)1/3, so also the vertical diffusivity changes when only the horizontal resolution is
changed.

In order to verify whether the discrepancy between the ∆x and ∆z influences the solution, two extra series of
experiments have been done with different values for ∆z, while the total domain height remained 400 m. In
order to compare them, the aspect ratio has been defined as:

r = ∆x

∆z
(4.9)

In Figure 4.7 is the height of the nocturnal jet plotted versus the aspect ratio, for several values of ∆z and ∆x.

From Figure 4.7 can be concluded that the part of the problem can be traced back to the aspect ratio r 6= 1, as
for each of the series of simulations holds that the height of the nocturnal jet increases with the aspect ratio.
However, this is only part of the solution. If different data points with the same aspect ratio are compared, for
instance at r = 4, it is clear that the nocturnal jet height also increases with ∆.

A solution for part of the problem caused by the aspect ratio could be introducing an anisotropic Km,h . This
means that Km,h is different for the horizontal (x, y) and the vertical (z) direction. The method proposed by
Khairoutdinov [16] has been followed in this thesis. By changing the definition of∆ to∆=∆z in the LES code,
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Figure 4.7: Height of the nocturnal jet versus the aspect ratio for three sets of DALES runs with different ∆z

the vertical diffusion does not depend on the horizontal grid size any more. For the horizontal eddy diffusion,

the terms Kh and Km should then be multiplied with ∆x∆y
(∆z)2 to obtain the original definition.

Do this method help fixing part of the problems of the DALES code? In Figure 4.8 are the surface wind profiles
of the high resolution DALES reference, the results of a run with the new anisotropic Km,h and the original
DALES code, both with ∆x = 12.5m. Also the Monin Obukhov similarity functions have been plotted. This
experiment has been repeated for several values of ∆x, elaborate results are in Appendix F.3.
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Figure 4.8: Results of one experiment with anisotropic Km,h . The runs with the adapted and original DALES code have
been performed with ∆x = 12.5.

The results in Figure 4.8 seem very good, as the Uh profile approaches the high resolution run much better
than the original DALES code at the same resolution. Also the similarity functions follow the Monin-Obukhov
theory very well. Unfortunately, this is not the case for the other experiments at different grid resolutions with
this version of the DALES code, see Appendix F.3. For smaller ∆x the profile is very similar to the runs with
the original DALES code. This was to be expected, as the aspect ratio r ≈ 1. For higher ∆x, the code becomes
unstable: above the nocturnal jet, a lot of resolved turbulence is generated, see Appendix F.3.





5
THE SULLIVAN MODEL

In the previous section the problems with the LES code used in DALES were extensively studied. It was shown
that the for a subgrid dominated case, the subgrid TKE scaled with the grid size, yielding unreliable results.
Moreover, the subgrid dominated solutions did not follow the Monin Obukhov similarity theory. Sullivan
et al. [2] proposes an adaptation to the LES equation 2.3 and subgrid TKE equation 2.18 in order to overcome
this problem and ensure at the same that the resulting profiles follow indeed the Monin-Obukhov similarity
relation.

5.1. THE ORIGINAL IDEA

In order reduce the subgrid TKE production and ensure that the resulting Uh profile follows the Monin
Obukhov theory, the following changes are made to respectively the subgrid TKE production term Ps from
Equation 2.18 and the subgrid shear term τi j from 2.3:

P sul
s = 2Kmγ(Si j −〈Si j 〉)(Si j −〈Si j 〉) = γKm(S′)2 (5.1)

τsul
i j =−2KmγSi j −2KM 〈Si j 〉 (5.2)

The factor γ is given by:

γ= S′

S′+〈S〉 (5.3)

In this equation, the terms S′ and 〈S〉 are given by:

S′ =
√∑

i , j
2〈(Si j −〈Si j 〉)(Si j −〈Si j 〉)〉

〈S〉 =
√∑

i , j
2〈Si j 〉〈Si j 〉

The changes Sullivan et al. [2] introduces in these formulas consist of three parts:

• In order to reduce the production of subgrid TKE, the production term by shear Ps is adapted by sub-
tracting the mean shear. In this way, only variations in the shear will induce subgrid TKE.

• The second change to the original LES model is adding an extra mean shear term to the LES equations
for ui , 2.3, resulting in 5.2. By choosing the mean strain eddy diffusivity KM correctly, it is possible to
make sure that the mean wind follows to Monin-Obukhov similarity theory.

• The final modification is the introduction of a anisotropy factor γ. Both the new subgrid TKE produc-
tion term P sul

s and the original subgrid shear term τi j are multiplied by γ defined in 5.3, resulting in
5.1 5.2. The γ factor consist of two terms: 〈S〉 is a measure for the mean strain, while S′ is a measure for
the fluctuations in the resolved strain. When the variations in the strain S′ are small, γ≈ 0. In this case

23



24 5. THE SULLIVAN MODEL

there will be less subgrid shear in the LES equations, and the production of subgrid TKE will be smaller.
Both effects should amplify the production of resolved motions.

The implementation of γ and P sul
s is relatively straightforward, the only remaining question is how to choose

a KM , which only depends on z and can of course change over time. The mean strain viscosity KM is defined
in Sullivan et al. [2] using Prandtl’s mixing length concept:

KM = (l∗)2〈S〉 (5.4)

The mixing length l∗ is chosen in such a way, that the Monin-Obukhov theory holds at z = ∆z, the first grid
level were w 6= 0, see Figure 2.2. The length scale l∗ is constant for the whole space, therefore independent of
(x, y, z). It is assumed that the momentum flux, or surface stress, stay constant between z = 0 and z =∆z. The
surface stress at z = 0 is then required to be equal to the sum of the resolved and subgrid momentum fluxes
at z =∆z:

u2
∗|z=0 =

√
〈τuw 〉2 +〈τv w 〉2|∆z +

√
〈ũw̃〉2 +〈ṽ w̃〉2|∆z (5.5)

An expression for 〈τi j 〉 can be found by taking the slab average of equation 5.2 while assuming 〈KmSi j 〉 =
〈Km〉〈Si j 〉. This corresponds to ignoring contributions of the fluctuating strain. This results in the following
expression for the slab averaged subgrid shear:

〈τi j 〉 =−2(〈Kmγ〉+KM )〈Si j 〉 (5.6)

As 〈w̃〉 = 0 per definition, 〈Suw 〉 = 1
2
∂〈ũ〉
∂z . The same result applies of course to 〈Sv w 〉. A second assumption

is made regarding the average horizontal wind Uh =
√
〈ũ〉2 +〈ṽ〉2 at z = ∆z. Turning of the average hori-

zontal wind is neglected between the surface and ∆z, combined with cyclic boundary conditions this results
in: √

(2〈Suw 〉)2 + (2〈Sv w 〉)2 =
√√√√(

∂〈ũ〉
∂z

)2

+
(
∂〈ṽ〉
∂z

)2

≈ ∂Uh

∂z
(5.7)

Now Equations 5.6 and 5.7 can be implemented in Equation 5.5, yielding:

− (〈Kmγ〉+KM )
∂Uh

∂z
|∆z +

√
〈ũw̃〉2 +〈ṽ w̃〉2|∆z = u2

∗ (5.8)

The final step of the derivation is requiring that ∂Uh
∂z follows the Monin-Obukhov similarity function at z =∆z,

the similarity function is given by:
∂Uh

∂z
= u∗φm

κz
(5.9)

Substituting Equation 5.9 evaluated on z =∆z in Equation 5.8, the mean strain viscosity KM |∆z is obtained:

KM |∆z = u∗κ∆z

φm(∆z)
−〈Kmγ〉− κ∆z

u∗φm(∆z)
[〈uw〉2 +〈v w〉2]1/2 (5.10)

From this relation the mixing length l∗ can be easily deduced, by multiplying with the Monin-Obukhov sim-
ilarity function from Formula 5.9 and rewriting it in the following manner:

KM |∆z =
(

(κ∆z)2

(φm(∆z))2 − κ∆z

u∗φm(∆z)
〈Kmγ〉− (κ∆z)2

(u∗φm(∆z))2 [〈uw〉2 +〈v w〉2]1/2

)
︸ ︷︷ ︸

(l∗)2

(
∂Uh

∂z
|∆z

)
︸ ︷︷ ︸

〈S〉

(5.11)

Since l∗ is constant in space, is has now been determined in such a way that the Monin-Obukhov relation is
obeyed at z =∆z. The values of KM at all heights z can now be easily determined using Formula 5.4. In order
to prevent forcing of the Monin Obukhov theory by the Sullivan model at the top of the boundary level, the
Sullivan model was only used up to z = zi /2, where the boundary layer height zi was defined as:

zi = min(|∂〈θ̃v 〉
∂z

|) (5.12)

Above this height, KM and γ were set to KM = 0 and γ = 1, which reduces the Sullivan model to the original
DALES code.
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5.2. SULLIVAN MODEL WITH γ= 1

From the description of Sullivan’s model, it is clear that it seems to consist of two parts which try to reach
the same goal. On one hand the factor γ is used to decrease the TKE production by shear and the subgrid
shear effect on the resolved motions. On the other hand do the adapted subgrid TKE production term and
the added extra mean strain term in the LES equation also decrease subgrid production and stimulate the
resolved motions. In order to find out whether both parts are both necessary to obtain a good result, Sullivan’s
model is also tested with γ= 1 everywhere. In this way, the whole idea of an extra factor is basically removed
from the model, yielding a simpler and computational less expensive method.

5.3. SIMPLER FORMULATION OF KM

A second adaptation to the original model is tested, which involves a much simpler KM than Sullivan actually
proposed. It is useful to look again at the formulation of the l 2∗ from Formula 5.11, the length scale associated
with the mean eddy diffusivity.

(l∗)2 = (κ∆z)2

(φm(∆z))2 − κ∆z

u∗φm(∆z)
〈Kmγ〉− (κ∆z)2

(u∗φm(∆z))2 [〈uw〉2 +〈v w〉2]1/2 (5.13)

The second term on the right hand side is probably very small compared to the first term, as at z =∆z mean
shear is very dominant, therefore γ is small. Also the third term might be neglected: the resolved shear at
the bottom of the atmosphere is small compared to the sub grid shear, as there is little resolved motion. This
yield a much simpler length scale and therefore simpler KM = (l∗)2〈S〉:

(l∗)2 = (κ∆z)2

(φm(∆z))2 (5.14)

This length scale equals the preliminary result of Equation 2.32, which presents the definition of Km if the
Monin Obukhov theory is exactly met. This is to be expected, as the subgrid and resolved contributions are
neglected in this simplification: the only term which can censure the Monin Obukhov theory is now the mean
shear, which should therefore incorporate the Monin Obukhov obeying KM .

5.4. ADAPTATION FOR BUOYANCY FLUXES

For the buoyancy fluxes, the same approach can be taken as for the momentum fluxes to promote resolved
motions and diminish the effect of the sub grid. The equation for θv in DALES is given by Formula 2.4. To
modify this equation according to the method of Sullivan, the parameterization of the subgrid buoyancy flux
is changed both in the subgrid TKE equation and in the θv equation. In the subgrid TKE equation, similar to
Equation 5.1, the buoyancy term becomes:

�w ′θ′v =−Kh

(
∂θ̃v

∂z
−〈∂θ̃v

∂z
〉
)

(5.15)

And in the θv equation (compare with 5.2) it is changed to:

�w ′θ′v =−Kh
∂θ̃v

∂z
−KH 〈∂θ̃v

∂z
〉 (5.16)

The diffusivity KH should now be chosen in such a way, that the Monin-Obukhov similarity function for heat
transport is obeyed, which is:

φh =− κzu∗
〈�w ′θ′v 〉|z=0

〈∂θ̃v 〉
∂z

(5.17)

As the Monin-Obukhov relation is already met on the first full level z =∆z/2 because of the boundary condi-
tions, KH is chosen such that it meets the criteria at z =∆z, the second full level. 〈w〉 = 0, and if the turbulent
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heat flux is assumed constant below ∆z , then:

〈�w ′θ′v 〉|z=0 = 〈�w ′θ′v 〉|z=∆z +〈w̃ θ̃v 〉|z=∆z (5.18)

Combining this equation with the new parameterization in Formula 5.16, yields:

〈�w ′θ′v 〉|z=0 = 〈−Kh
∂θ̃v

∂z
−K ∗

H 〈∂θ̃v

∂z
〉〉|z=∆z +〈w̃ θ̃v 〉|z=∆z

≈−(〈Kh〉+K ∗
H )〈∂θ̃v

∂z
〉+〈w̃ θ̃v 〉|z=∆z

In the second step it is assumed that Kh and ∂θ̃v
∂z are not correlated. As slab-averaging and taking the derivative

can be interchanged, 〈 ∂θ̃v
∂z 〉 = ∂〈θ̃v 〉

∂z , and the Monin-Obukhov relation can be used:

〈�w ′θ′v 〉|z=0 =−(〈Kh〉+K ∗
H )
φh〈�w ′θ′v 〉|z=0

κ∆zu∗
+〈w̃ θ̃v 〉|z=∆z

KH |∆z =
κ∆zu∗
φh(∆z )

−〈Kh〉−
κ∆zu∗

φh(∆z)〈�w ′θ′v 〉|z=0

〈w̃ θ̃v 〉|z=∆z

For the other heights, an adaption of the Prandtl mixing length concept is used. It is assumed that:

KH = (l∗H )2〈S〉 (5.19)

Using the Monin-Obukhov function for momentum (Formula 5.9) and the fact that φm =φh , the KH at level
z =∆z can be written as:

KH |∆z =
 (κ∆z)2

(φh(∆z ))2 − κ∆z

u∗φh(∆z)
〈Kh〉−

(κ∆z)2

(φh(∆z))2〈�w ′θ′v 〉|z=0

〈w̃ θ̃v 〉|z=∆z


︸ ︷︷ ︸

(l∗H )2

(
∂Uh

∂z

)
|∆z︸ ︷︷ ︸

〈S〉

(5.20)

As the mixing length is now fixed, Equation 5.19 can now be used to easily calculate the KH at all heights.

5.5. SUMMARY ON THE DIFFERENT SULLIVAN MODELS

To help read the Results section and make quick reference possible, this section provides the most impor-
tant formulas, as well as a short summary on the different models. The LES equations in DALES are given
by:

∂ũi

∂t
+ ∂ũ j ũi

∂x j
=− ∂π̃

∂xi
+ θ̃v

θ0
gδi 3 −

∂τi j

∂x j
+Fi

∂θ̃v

∂t
+ ∂ũ j θ̃v

∂x j
=−

∂�u′
jθ

′
v

∂x j

The equation for the subgrid TKE is given by:

∂e1/2

∂t
+ ũ j

∂e1/2

∂x j
= 1

2e1/2

(
g

θ0

�w ′θ′v −τi j
∂ũi

∂x j

)
+Km

∂e1/2

∂x j
− cεe

2λ

The main difference between the original DALES formulation and the several alternatives, is the parametriza-

tion of the subgrid fluxes τi j and �w ′θ′v . In Table 5.1 are the different parametrizations listed.
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Table 5.1: Overview of the different models tested in this thesis.

LES equation subgrid TKE equation KM Details

Model τi j
�w ′θ′v τi j

�w ′θ′v

DALES −2KmSi j −Kh
∂θ̃v
∂z −2KmSi j −Kh

∂θ̃v
∂z not used Section 2.1

Sullivan −2γKmSi j −2KM 〈Si j 〉 −Kh
∂θ̃v
∂z −2γKm

(
Si j −〈Si j 〉

)
−Kh

∂θ̃v
∂z Formula 5.11 Section 5.1

Sullivan (γ= 1) −2KmSi j −2KM 〈Si j 〉 −Kh
∂θ̃v
∂z −2Km

(
Si j −〈Si j 〉

)
−Kh

∂θ̃v
∂z Formula 5.11 with γ= 1 Section 5.2

Sullivan (simplified KM ) −2γKmSi j −2KM 〈Si j 〉 −Kh
∂θ̃v
∂z −2γKm

(
Si j −〈Si j 〉

)
−Kh

∂θ̃v
∂z

(κ∆z)2

(φm (∆z))2 〈S〉 Section 5.3

Sullivan(buoyancy) −2γKmSi j −2KM 〈Si j 〉 −Kh
∂θ̃v
∂z −KH 〈 ∂θ̃v

∂z 〉 −2γKm

(
Si j −〈Si j 〉

)
−Kh

(
∂θ̃v
∂z −〈 ∂θ̃v

∂z 〉
)

Formula 5.11 Section 5.4





6
RESULTS OF THE SULLIVAN MODEL

In this section the results of the model proposed by Sullivan et al. [2] will be presented. The details of the
models can be found in Section 5, the important formulas are listed in Section 5.5, together with an overview
of all the models which were tested. In order to visualize whether the models have the same resulting profiles
for the GABLS case as the high resolution DALES solution, the 4 different models are plotted together with
the high resolution solution in Figure 6.1. In order to compare the different models with each other, also the
resolved TKE has been plotted, defined as:

T K Er esol ved =∑
i
〈(ũi −〈ũi 〉)(ũi −〈ũi 〉)〉 (6.1)
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(b) Resolved TKE of the Uh profiles

Figure 6.1: Resulting profiles of the different adaptations of Sullivan’s model and the original DALES model. The DALES
solution is high resolution with ∆x = 3.125 m, the Sullivan solutions have a grid spacing of ∆x = 6.25 m

From this Figure 6.1 it is clear that all the adaptations of Sullivan’s original idea nicely follow the high resolu-
tion result, at least at∆x = 6.25 m, as the difference between the different graphs is smaller than

√
T K E•textr esol ved =√

σ2
U . However, it appears that at the second grid point there is a small maximum in the derivative of the hor-

izontal speed , which every model has. This is located at the second half level z = 3
2∆z, see 2.2. This is the

first level where u and v are defined above the level z = ∆z where the KM is fixed to obey Monin Obukhov.
This might indicate an error in either the implementation of the Sullivan model, or an imperfection in the
implementation of the boundary condition in the original DALES code.

How do the Sullivan models perform when the grid size is changed? Again, the height of the nocturnal jet is
used as a reference point, compared to the results of the original DALES code. The results of these simulations

29
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are plotted in Figure 6.2. The Sullivan adaptations behave differently from the original DALES code: the
nocturnal jet height does not grow with the grid size, but converges to a constant value. Unfortunately, this
value is not at the expected height of 190 m from the high resolution solution, but it is located at ≈ 140 m.
However, Figure 4.4b shows that this is indeed the height at which also the simple 1D model converses for
α= 5. So the Sullivan solutions do exactly coincide with the Monin Obukhov theory.

0 20 40 60 80 100 120 140 160 180 200

100

150

200

250

300

∆x =∆y

z m
a

x
DALES

Sullivan
Sullivan γ= 1

Sullivan simple KM

Figure 6.2: Height of the nocturnal jet versus the horizontal grid resolution in the original DALES code and the different
Sullivan models

In Figure 6.3 the resulting Monin-Obukhov similarity functions are plotted for one illustrating grid size of
∆x = 25m. From the four figures, it is clear that the implementations of Sullivan’s model all yield great results
for the similarity functions. The Prandtl number is indeed one, and theφm,h coincide nicely with the 1+5z/Λ
graph. In Appendix G results for other ∆x can be found, which also show that the Sullivan models follow the
Monin Obukhov theory very well. Only when ∆x becomes really large (100 or 200 m), the similarity functions
diverges from the expected 1+5z/Λ.

Compared with the Hres DALES result, the TKE profiles are remarkable. For the original Sullivan model, the
TKE profiles of the highest and lowest resolution run are plotted in Figure 6.4. There is still a difference be-
tween the big and small horizontal grid sizes. As could be expected from the DALES results, the resolved
TKE dominates when ∆x is small, and the subgrid TKE dominates when ∆x is large. Whereas the total TKE
increased with ∆x using the original DALES code, the total TKE decreases with ∆x with the Sullivan mod-
els. However, the total TKE remains in the same order of magnitude between the different low resolution
runs with the Sullivan code (∆x = 50,100,200 m, Appendix G.1), which could explain why the height of the
nocturnal jet (Figure 6.2) does converge.

Can these differences between the original DALES code and the Sullivan model be understood from the
changes made in the Sullivan model? In order to answer this question, it is useful to look the different shear
terms in the original DALES and new Sullivan LES equation, see 5.5. The different shear terms are given
by:

τsubg r i d =
√

〈τuw 〉2 +〈τv w 〉2

τr esol ved =
√
〈ũw̃〉2 +〈ṽ w̃〉2

τtot al = τsubg r i d +τr esol ved

(6.2)
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(d) Sullivan model (including KH ), ∆x = 25 m

Figure 6.3: Monin-Obukhov similarity functions for the Sullivan results of the GABLS case
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Figure 6.4: Vertical distribution of turbulent kinetic energy for two Sullivan simulations of the GABLS case
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As described in 5, the Sullivan model introduces a new shear term in the LES equation. At the same time, the
subgrid shear term is multiplied by the factor γ. The new terms are thus given by:

τsubg r i d =
√
〈γτuw 〉2 +〈γτv w 〉2

τSull i van =
√

(KM 〈Suw 〉)2 + (KM 〈Sv w 〉)2

τtot al = τsubg r i d +τr esol ved +τSull i van

(6.3)

As an illustration, the shear profiles of the original DALES model and the Sullivan model are plotted, both
with a grid size of∆x = 25 m, in Figure 6.5. While the shear in DALES in completely dominated by the subgrid
contribution, in the Sullivan model especially the resolved and "Sullivan" shear τSull i van play an important
role. The subgrid shear is only quite big at the surface, which is expected.

How does the Sullivan model function? Right above the surface, z ≈ 30 m in the figures, the mean shear 〈S〉
is quite big. This decreases the production of subgrid TKE, resulting in smaller amount of subgrid TKE on
this level, which can be seen in Figure 6.4. Less subgrid TKE means smaller Km,h , and therefore less subgrid
shear as compared to the Hres DALES result. At this point, there is some Sullivan shear to ensure obedience
to the Monin Obukhov theory. Because the mean shear does not damp velocity fluctuations as the subgrid
shear does, resolved motions can be formed. For runs with low ∆x < 50, the simulation becomes dominated
by the resolved solutions, and not the subgrid solutions as the original DALES code. This appears to be the
real reason for consistency with the Monin Obukhov theory: the problem is not dominated any more by the
subgrid parametrization.

From Figure 6.5 it seems that the functioning of the Sullivan model is as follows. The Sullivan shear term
is only quite big just above the surface, apparently creating resolved motions. Through this mechanism, the
simulation becomes dominated by the resolved solutions, and not the subgrid solutions as the original DALES
code. This appears to be the real reason for consistency with the Monin Obukhov theory: the problem is not
dominated any more by the subgrid parametrization.
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Figure 6.5: Vertical distribution of shear for the DALES and Sullivan code with a grid size of ∆x = 25 m

6.1. RESULTS FOR AN UNSTABLE BOUNDARY LAYER

In order to test whether the Sullivan model performs equally well in unstable atmospheric conditions, also
some test have been done using a Convective Boundary Layer case. In this artificial case is initiated with a
geostrophic wind speed of 8 m

s in the x-direction. The initial θv profile is 290 K for the first 300 m, above a

slight gradient of 8.2 K
km . Constant velocity and θv were set at the ground level. In Figure 6.6 the results of this

analysis has been plotted. From analyzing the variation of both profiles, it is clear that the original Sullivan
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models produces comparable results as the original DALES model. These plots have only been added to give
a brief inside in whether there would be big difference between the Sullivan model and the original LES code,
no further research has been done in unstable boundary layer.
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Figure 6.6: Resulting profiles of the CBL case for the DALES and original Sullivan model.





7
DISCUSSION AND CONCLUSION

7.1. SUMMARY

In this thesis the functioning of the LES model with the prognostic subgrid TKE equation in the stable bound-
ary layer has been studied using the GABLS case. The results show that for a horizontal grid size ∆x > 3.125
m, the LES solution becomes dominated by the subgrid parametrization. It can be derived that the subgrid
TKE and therefore the eddy diffusivities in that case scale with the grid size, which was proven qualitatively
by experiments. It was also shown that the subgrid dominated solutions did not follow the Monin-Obukhov
similarity theory: the turbulent Prandtl number was not the expected value, and the slope of the similarity
functions depended on the grid size.

In order to overcome these issues with simulating the stable boundary layer, the model proposed by Sulli-
van et al. [2] was implemented. Due to the new model formulation, production of subgrid TKE is surpressed
whenever the mean shear is large, which ensures less subgrid shear and therefore more production of re-
solved motions. An introduced mean shear term in the LES equations ensured that the solutions followed the
Monin-Obukhov theory. Several adaptations of Sullivan’s model have been researched, the results were quite
similar. All the adaptations improved the LES results: the because of the increased production of resolved
motions, the results were not subgrid dominated for ∆x < 100 m. This also ensured the correct similarity
functions. However, the Sullivan models were not completely robust to grid size changes.

7.2. COMPARISON OF DIFFERENT MODEL ADAPTATIONS

Several adaptations of the LES code have been proposed and tested, what would be the best option? Impor-
tant characteristics for a good subgrid model are of course the following:

• A new subgrid model of the code should produce (statistically) the same results as the high resolution
DALES run.

• The results should, for stable circumstances, obey the Monin-Obukhov similarity theory

• The results should be robust for changes in the grid size.

• As the DALES code worked fine for unstable atmospheric conditions, the new subgrid code should not
influence these results.

As shown in the DALES Results Chapter 4 , the original DALES code does not comply with the first three
requirements for the stable situation, especially when the subgrid parametrization dominates the solution,
The results change with the grid size, and also the Monin-Obukhov similarity theory is not followed any more.
First, several simple solutions for these problems have been tested. Changing the definitions of the subgrid
constants ch,ε did improve the compliance with the similarity theory, as long as the horizontal grid size was
not too large. Trying to create an anisotropic Km,h however, did not improve the model at all, although it was
shown that anisotropy in the grid cells was part of the problem.
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A second series of test was done on the model by Sullivan et al. [2] and several adaptations. These models
all performed well, there was not much difference between the original model, the implementation with a
simpler mean strain diffusivity KM , the model without the factor γ and the model with a extra buoyancy
term. Although these models were not completely robust to grid size changes, the results seemed to converge
for higher grid sizes. Also the Monin-Obukhov theory was obeyed, even at extreme grid sizes.

7.2.1. ROBUSTNESS FOR GRIDSIZE CHANGES

As shown in the previous section and in the Results chapters, almost every model is sensitive to the change in
horizontal grid size. In order to illustrate this, all the graphs of height of the nocturnal jet versus the horizontal
grid have been plotted in Figure 7.1. It has been shown in Section 4.2 that part of this behaviour is due to
an anisotropic grid, but this explains not all. While other problems of the DALES code can be solved with
different subgrid implementations, the dependency on horizontal grid size remains a problem.
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Figure 7.1: Height of the nocturnal jet versus the horizontal grid resolution in the original DALES code, adaptations of the
DALES code and the different Sullivan models

Why is this the case? First, it is important to remember that the whole LES framework is based on the division
between resolving large scale (>∆) turbulence and parameterizing small scale turbulence. In normal simula-
tions this is fine, as the results will be completely dominated by the resolved calculations. In the GABLS case
however with grid size bigger than a few meter, and all other simulations of the stable boundary layer, most of
the turbulence is in fact subgrid scale: the parameterization determines the results of the simulation.

The results varying with grid size are then easy to understand. In the simulations of the GABLS case with
the highest resolutions, all models produce resolved motion dominated results. For grid sizes greater than
∆x = 50m, all models produce subgrid based results. Between those to grid sizes, there must be a change
from the reliable resolved solutions to the parameterized subgrid solutions, which do not produce the same
results. Figure 7.1 shows nicely the difference in resulting nocturnal jet height between the original codes
and the Sullivan model: the Sullivan model and adaptations converge when subgrid is dominated (∆x > 50),
whereas the DALES code does not.

7.2.2. RUNTIME OF DIFFERENT MODELS

For practical implementation, also the runtime of the different models is important. If a model is slightly
better than the baseline, but at a much higher CPU time, it might not be an improvement for practical imple-
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mentations. In Table 7.1 are the average run times of all model formulations.

Model name Average run time (103 s)

DALES 18
DALES Prt = 1 adapted 58
DALES anisotropic Km,h 56
Sullivan original 14
Sullivan without γ 13
Sullivan with simple KM 14
Sullivan including buoyancy term 13

Table 7.1: Runtime of 9 hours GABLS case for the different codes (s).

It is striking to see that all Sullivan based models have a lower run time than the original DALES code, although
a lot more calculations need to be performed. This is due to the fact that the Sullivan code generally runs with
a bigger time step for numerical integration, which is calculated in the code based on numerical stability
criteria.

However, not too much emphasis should be put on the numbers in Table 7.1. Run times of different runs with
the same code experienced big differences of sometimes > 100% . Also the difference between the original
DALES code and the DALES code with Prt = 1 and anisotropic Km,h is too big to be explained by just the
simple changes done. Furthermore, the computer cluster Cirrus is constantly updated, and the different
experiments have not been done at the same time.

When using parallel computing to run the codes, another aspect needs to be taken into account. Averaging
over the whole horizontal domain, which is done extensively in the Sullivan model, cost a lot of time, as
different processors need to communicate with one another. Although this increased time is not visible in
the results presented here, it is a big problem with the GPU version of the code.

7.3. OUTLOOK

The results of this thesis suggest that implementing the model of Sullivan into DALES would be an improve-
ment, resulting in better solutions if modeling stable boundary layers with a large grid size and not interfering
with the good results in the unstable boundary layer. As several variants were tested, which all performed
equally well, the simplest variant, with γ= 1 and a simple definition of the new mean shear diffusivity KM is
probably best. However, there are still some issues which need to be resolved.

First, the physical idea behind the model. As presented in this thesis, Sullivan’s model is an engineered way
to let the LES results fit the measured and proposed Monin Obukhov functions. The DALES equations can be
derived directly from the Navier Stokes equations, and the production of subgrid TKE corresponds therefore
with the transport of kinetic energy from the larger resolved motions. As in the Sullivan model different terms
are subtracted in the subgrid TKE and the LES ui equations, this symmetry is broken. In this paper it has been
shown that the effect of these extra terms is only in the lower part of the boundary layer and induces resolved
motions, at which point the subgrid model is again of lesser importance. However, it remains that an un-
physical asymmetry is present in the equations. It would perhaps be an idea to reformulate the normal eddy
diffusivities Km,h in a manner comparable to Sullivan’s idea, instead of linking them the subgrid TKE.

A second issue involves the slab averaging done in the new subgrid model. For the GABLS case it is fine
to average over the whole domain, but this is not right to do when LES is used on a much bigger scale. As
Schalkwijk [4] showed, LES might be used in the future for weather predictions with a computational domain
of a whole country, at which point slab averaging over the whole domain would not do. When the Sullivan
model will be implemented at this scale, other possibilities need to be researched. A very pragmatic idea
would be to average per core used, as this is computational probably most efficient. However, this would not
make much sense physically, as the physical architecture of the computer should not influence the results
of the LES simulation. A better way is to average over grid cells which are linked in space and are "alike" in
atmospheric conditions. How to define "alike" would be a interesting research question.
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A
DERIVATION OF THE DALES SUBGRID

EQUATION

The subgrid TKE equation is given by:

∂e

∂t
+ ũ j

∂e

∂x j
=

�θ′v w ′

θ0
g −

�∂π′u′
j

∂x j
−τi j

∂ũi

∂x j
−
∂�e ′u′

j

∂x j
−ε (A.1)

For the unknown turbulent production terms �w ′θ′v , τi j and the turbulent fluxes �π′u′
j and �e ′u′

j , the following

parametrisation are used:
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(∂ũi

∂x j
+ ∂ũ j
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(A.2)

By substituting Equations A.2 into Equation A.1, and taking ε= cε
λ e3/2 the following can be found:

∂e

∂t
+ ũ j

∂e

∂x j
=−Kh N 2 − ∂

∂x j

(
−Km

∂e

∂x j

)
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∂x j
−ε (A.3)

How is this implemented in the DALES code? Two important computational steps are taken:

• As the Km and Kh terms depend on
p

e, it is useful to define the whole subgrid TKE equation in this
variable. Using the product rule for differentiation:

∂e

∂t
= 2e1/2 ∂e1/2

∂t
(A.4)

This holds of course also for differentiation with respect to x j , and therefore the both sides of the sub-
grid TKE equation can be divided by 2e1/2.

• The total shear term in the subgrid TKE equation is modeled as:

�u′
i u′

j

∂ũi

∂x j
=−Km

(
∂ũ j

∂xi
+ ∂ũi

∂x j

)
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(A.5)
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By writing out all the terms of Si j
∂ũi
∂x j

it can be seen that this equation can be rewritten to a more simpler

one, saving cpu memory. The resulting formulation is:(
∂ũ j

∂xi
+ ∂ũi

∂x j

)
∂ũi

∂x j
= 1

2

(
∂ũ j

∂xi
+ ∂ũi

∂x j

)2

= 2
∑
i , j

S2
i j ≡ S2 (A.6)

Combining these steps, yields the following formulation for the subgrid TKE equation:
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B
THE 1D MODEL FOR STABLE ATMOSPHERIC

BOUNDARY LAYER

In this appendix, the derivation and implementation of the 1D model for the stable boundary layer will be
given. From the results of the DALES run, it becomes clear the buoyancy force and the transport terms in the
LES equations can be neglected. The term Fi is given by the Coriolis force:

Fx = 2Ωsinψv = f v

Fy =−2Ωsinψu =− f u
(B.1)

TheΩ= 2π
24∗3600

m
s is the earth’s angular velocity and ψ= 72◦ is the latitude in the GABLS case. The simplified

equations are now given by:

∂u

∂t
= f v − ∂p

∂x
− ∂τuw

∂w
∂v

∂t
=− f u − ∂p

∂y
− ∂τv w

∂w

∂θv

∂t
=−∂wθv

∂z

(B.2)

If there is no turbulence in a steady state atmosphere, the pressure term and Coriolis term should cancel,
resulting in the geostrophic wind:

∂p

∂x
= f vg eo

∂p

∂y
=− f ug eo

(B.3)

In the GABLS case, ug eo = 8 m
s and vg eo = 0. For the eddy diffusion terms the down gradient diffusion from

Formula 2.9 and 2.10 can be used. As there is no z velocity in this simple model, the parametrization for
momentum simplifies to:

τuw,v w =−Km
∂u, v

∂z
(B.4)

In order to obtain a closure scheme for the Km,h terms that obeys the Monin-Obukhov similarity theory, For-
mula 2.34 is used with Prt = 1. Combining parametrisations with the simplified LES equation, the following

43
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system should be solved by numerical integration:

Rig =
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(B.5)

The actual code is programmed in MatLab 2014b and is added here for reference:

clc; clear all; close all;

% Integration parameters
H=400; %m
T=3600*9; %s
dz=6.25; %m
dt=0.25; %s
z=(0:dz:H)';
n=length(z);
steps=round(T/dt);
zh=(z(2:end)+z(1:end-1))/2;

% Physical parameters
f=1e-4; %1/s
K=1; %m^2/s
Ug=8; %m/s
Vg=0; %m/s
Tg=263.5; %K
T0=265;
alpha=5;
Pr=1;
kappa=0.4;

% Initialisation
u0=Ug*ones(n,1); u0(1)=0;
v0=zeros(n,1);
u=u0;
v=v0;
Km=zeros(n-1,1);
Kh=Km; S2=Km; N2=Km;

% Extended initialisation th
[ho100, h100 ]=min(abs(z-100));
th=v0;
th(1)=Tg(1);
th(2:h100)=T0*ones(h100-1,1);
th(h100+1:n)=T0+0.01*(z(h100+1:n)-(ho100+1));
th0=th;

% Surface cooling
Tg=linspace(263.5,263.5-9*0.25,steps);

for i=1:steps

%The formulation of K_m
S2=((u0(2:end)-u0(1:end-1))/dz).^2+((v0(2:end)-v0(1:end-1))/dz).^2;
N2=9.81/Tg(i)*(th0(2:end)-th0(1:end-1))/dz;
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Rig=N2./(S2+1e-6);

for k=1:n-1
if Rig(k)<(Pr/alpha)

Km(k)=(1-alpha * Rig(k)/Pr).^2 * (kappa* zh(k)).^2 * sqrt (S2(k));
else Km(k)=1e-4;
end

end
Kh=Pr*Km;

% Fluxes
uw=-Km.*(u0(2:end)-u0(1:end-1))/dz;
vw=-Km.*(v0(2:end)-v0(1:end-1))/dz;
wthv=-Kh.*(th0(2:end)-th0(1:end-1))/dz;

% Integration
u(1)=0; v(1)=0; th(1)=Tg(i);
u(2:end-1)=u0(2:end-1)+dt*( f*(v0(2:end-1)-Vg)-(uw(2:end)-uw(1:end-1))/dz);
v(2:end-1)=v0(2:end-1)+dt*(-f*(u0(2:end-1)-Ug)-(vw(2:end)-vw(1:end-1))/dz);
th(2:end-1)=th0(2:end-1)+dt*(-(wthv(2:end)-wthv(1:end-1))/dz);
u(end)=u(end-1);
v(end)=v(end-1);
th(end)=th(end-1);

%Reset
u0=u;
v0=v;
th0=th;

if rem(i,(steps/36))==0
pause(0.5)
plot(sqrt(u.^2+v.^2),z)

subplot(2,2,1)
plot(u,z,v,z,sqrt(u.^2+v.^2),z)
xlabel('U_s')
ylabel('z')
legend('u','v','U_s')
subplot(2,2,2)
plot(th,z)
xlabel('\theta_v')
ylabel('z')
subplot(2,2,3)
plot(uw,zh,vw,zh)
xlabel('$\bar{uw}$','Interpreter','LaTex')

ylabel('z')
legend({'$\bar{uw}$','$\bar{vw}$'},'Interpreter','LaTex')
subplot(2,2,4)
plot(wthv,zh)
xlabel('$\bar{w\theta_v}$','Interpreter','LaTex')

ylabel('z')

end

end





C
SETTING OF DALES

Here a NAMoptions file is presented, used to select different run options of DALES.

RUN
iexpnr = 000 lwarmstart = .false.
startfile = ’initd06h00m000.017’ runtime = 32400
trestart = 3600 dtmax = 10
ladaptive = .true. irandom = 43
randthl = 0.1 randqt = 2.5e-5
nsv = 1

DOMAIN
imax = 64 jtot = 64
kmax = 64 xsize = 400.
ysize = 400. xlat = 73.
xlon = 0. xday = 0.
xtime = 0.

PHYSICS
ps = 101500.00 thls = 265.
lmoist = .false. lcoriol = .true.
iradiation = 0 ltimedep = .true.

NAMSURFACE
albedoav = 0.24 wtsurf = -0.04
wqsurf = 0. isurf = 2
lsmoothflux = .false. ustin = -999
z0 = 0.2

NAMRADSTAT
dtav = 60 timeav = 600.
lstat = .true.
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48 C. SETTING OF DALES

DYNAMICS
llsadv = .false. lqlnr = .false.
cu = 7. cv = 0.
iadv_mom = 5 iadv_tke = 5
iadv_thl = 5 iadv_qt = 5
iadv_sv = 5

NAMSUBGRID
ldelta1 = .false. cn = 0.76

NAMBUDGET
lbudget = .true. dtav = 60.
timeav = 600.

NAMCHECKSIM
tcheck = 6

NAMTIMESTAT
ltimestat = .true. dtav = 60

NAMGENSTAT
lstat = .true. dtav = 60
timeav = 600

NAMSTATTEND
dtav = 60 ltend = .true.
timeav = 600.

1If .ldelta. is switched to true, λ=∆. If switched false, as done here, λ= min
(
∆,cn

p
e/N

)



D
SIMULATION IDENTIFICATION

In this section, the simulation run numbers of the experiments described in this thesis can be found for
reference. All the simulations can be found in the directory /nfs/livedata/victor/Les/Experiments/Gabls1. The
important simulations can be found here, in this directory is also an extensive readme file. All the folders
contain a series of simulation where only the total horizontal domain is changed. Each simulation includes a
folder with the Fortran files of the exact code used.

Table D.1: Reference table for the experiment numbers used in this thesis

Model Directory Description

Original DALES V512_V518 Original DALES code
DALES with ch,ε adapted V486_V492 DALES code with ch,ε as described in Formula 4.8
DALES with anisotropic Km,h V493_V499 Anisotrope Km,h following Section 4.2
Original DALES, ∆z=12.5 m V519_V526 Original DALES code with adapted ∆z
Original DALES, ∆z=25 m V527_V534 Original DALES code with adapted ∆z
Original Sullivan code V452_V457 Original model described by Sullivan et al. [2]
Sullivan with γ= 1 V473_V478 Sullivan model with γ= 1 everywhere
Sullivan with simple KM V458_V463 Different definition of KM following Section 5.3
Sullivan with buoyancy adaptation V467_V472 Buoyancy fluxes as in 5.4
Original Sullivan, ∆z=12.5 m V535_V541 Original Sullivan code with adapted ∆z
Original Sullivan, ∆z=25 m V542_V548 Original Sullivan code with adapted ∆z

A week before the deadline of this thesis, an error was found in the boundary conditions modelling of the
original DALES code. This affected mainly the TKE budgets, give rise to a big TKE transport term. The runs
with DALES with the grid sizes ∆x = 6.25 m up to ∆x = 50 m were redone using this new code and using a
height of 800 m with 128 grid points in the vertical direction: twice as high as the other simulations, but with
the same ∆z. However, only the results up to a height of 400 m are presented.
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E
RESULTS OF THE GABLS CASE WITH THE

HIGH RESOLUTION DALES CODE

In this appendix the details of the high resolution reference run of the GABLS case with DALES can be found.
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Figure E.1: Profiles high resolution GABLS case
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F
ORIGINAL DALES MODEL AND

ADAPTATIONS

In presenting the similarity functions in the different DALES models, some data point around the height of
the nocturnal jet are omitted. Because the fluxes are very small here, the Monin-Obukhov length or simi-
larity functions can blow up or become negative due to rounding errors, yielding uninterpretable plots. For
this reason, only data point at a lower height have been presented. Especially the anisotropic DALES model
suffered from this effect.

F.1. ORIGINAL DALES

The results of the original DALES code, of which the important details are described in 2.1. Further informa-
tion can be found in [3].
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Figure F.2: TKE and shear profile, DALES with ∆x = 3.125m
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Figure F.4: TKE and shear profile, DALES with ∆x = 6.25m
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Figure F.6: TKE and shear profile, DALES with ∆x = 12.5m
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Figure F.7: Us profile and similarity functions, DALES with ∆x = 25m
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Figure F.8: TKE and shear profile, DALES with ∆x = 25m
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Figure F.9: Us profile and similarity functions, DALES with ∆x = 50m
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Figure F.10: TKE and shear profile, DALES with ∆x = 50m
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Figure F.11: Us profile and similarity functions, DALES with ∆x = 100m



F.1. ORIGINAL DALES 59

0 2 4 6 8 10 12
0

100

200

300

400

TKE(J/kg )

z(
m

)

Total
Resolved
Subgrid

(a) TKE profiles, ∆x 100m

0 5 ·10−2 0.1 0.15
0

100

200

300

400

Shear(m2/s2)

z(
m

)

Total
Resolved
Subgrid

(b) Shear profiles, ∆x 100m

Figure F.12: TKE and shear profile, DALES with ∆x = 100m
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Figure F.13: Us profile and similarity functions, DALES with ∆x = 200m
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Figure F.14: TKE and shear profile, DALES with ∆x = 200m

F.2. DALES WITH ADAPTED SUBGRID COEFFICIENTS

In this variant of the DALES code, adaptations are made in such a way that the subgrid model constants ch,ε

do not depend any more on the grid size ∆, yielding Prt = 1 . They are now given by:

ch = (ch,1)cm

cε = cε,1 + cε,2
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Figure F.15: Us profile and similarity functions, DALES with adapted ch,ε, with ∆x = 6.25m
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Figure F.16: TKE and shear profile, DALES with adapted ch,ε, with ∆x = 6.25m

2 4 6 8 10

0

100

200

300

400

U (m/s)

z(
h

)

Hres DALES
DALES adapted ch,ε ∆x= 12.5m

(a) Us profile, ∆x = 12.5m

0 2 4 6 8

0

10

20

30

40

z/Λ

φ

1+5 z
Λ

φm

φh

(b) Similarity functions, ∆x = 12.5m

Figure F.17: Us profile and similarity functions, DALES with adapted ch,ε, with ∆x = 12.5m
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Figure F.18: TKE and shear profile, DALES with adapted ch,ε, with ∆x = 12.5m
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Figure F.19: Us profile and similarity functions, DALES with adapted ch,ε, with ∆x = 25m
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Figure F.20: TKE and shear profile, DALES with adapted ch,ε, with ∆x = 25m
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Figure F.21: Us profile and similarity functions, DALES with adapted ch,ε, with ∆x = 50m
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Figure F.22: TKE and shear profile, DALES with adapted ch,ε, with ∆x = 50m
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Figure F.23: Us profile and similarity functions, DALES with adapted ch,ε, with ∆x = 100m
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Figure F.24: TKE and shear profile, DALES with adapted ch,ε, with ∆x = 100m
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Figure F.25: Us profile and similarity functions, DALES with adapted ch,ε, with ∆x = 200m
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Figure F.26: TKE and shear profile, DALES with adapted ch,ε, with ∆x = 200m
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F.3. DALES WITH ANISOTROPIC EDDY DIFFUSIVITIES

In this model, the Km,h coefficients are made different for eddy diffusion in the three different directions
(x, y, z). This is done by changing the definition of∆=∆z. When there is diffusion in horizontal direction, the

substitution Km,h = ∆x∆y
(∆z)2 in done.
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Figure F.27: Us profile and similarity functions, DALES with anisotropic Km,h , with ∆x = 6.25m
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Figure F.28: TKE and shear profile, DALES with anisotropic Km,h , with ∆x = 6.25m
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Figure F.29: Us profile and similarity functions, DALES with anisotropic Km,h , with ∆x = 12.5m
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Figure F.30: TKE and shear profile, DALES with anisotropic Km,h , with ∆x = 12.5m
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Figure F.31: Us profile and similarity functions, DALES with anisotropic Km,h , with ∆x = 25m
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Figure F.32: TKE and shear profile, DALES with anisotropic Km,h , with ∆x = 25m
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Figure F.33: Us profile and similarity functions, DALES with anisotropic Km,h , with ∆x = 50m
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Figure F.34: TKE and shear profile, DALES with anisotropic Km,h , with ∆x = 50m
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Figure F.35: Us profile and similarity functions, DALES with anisotropic Km,h , with ∆x = 100m
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Figure F.36: TKE and shear profile, DALES with anisotropic Km,h , with ∆x = 100m
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G.1. ORIGINAL SULLIVAN MODEL
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Figure G.1: Us profile and similarity functions, Sullivan model with ∆x = 6.25m
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Figure G.2: TKE and shear profile, Sullivan model with ∆x = 6.25m

2 4 6 8 10

0

100

200

300

400

U (m/s)

z(
h

)

Hres DALES
Sullivan ∆x= 12.5m

(a) Us profile, ∆x = 12.5m

0 1 2 3
0

5

10

15

20

z/Λ

φ

1+5 z
Λ

φm

φh

(b) Similarity functions, ∆x = 12.5m

Figure G.3: Us profile and similarity functions, Sullivan model with ∆x = 12.5m
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Figure G.4: TKE and shear profile, Sullivan model with ∆x = 12.5m
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Figure G.5: Us profile and similarity functions, Sullivan model with ∆x = 25m
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(b) Shear profiles, ∆x 25m

Figure G.6: TKE and shear profile, Sullivan model with ∆x = 25m

2 4 6 8 10

0

100

200

300

400

U (m/s)

z(
h

)

Hres DALES
Sullivan ∆x= 50m

(a) Us profile, ∆x = 50m

0 2 4 6

0

10

20

30

40

z/Λ

φ

1+5 z
Λ

φm

φh

(b) Similarity functions, ∆x = 50m

Figure G.7: Us profile and similarity functions, Sullivan model with ∆x = 50m
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(b) Shear profiles, ∆x 50m

Figure G.8: TKE and shear profile, Sullivan model with ∆x = 50m
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Figure G.9: Us profile and similarity functions, Sullivan model with ∆x = 100m
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Figure G.10: TKE and shear profile, Sullivan model with ∆x = 100m
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Figure G.11: Us profile and similarity functions, Sullivan model with ∆x = 200m
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Figure G.12: TKE and shear profile, Sullivan model with ∆x = 200m



74 G. SULLIVAN’S MODEL AND ADAPTATIONS

G.2. SULLIVAN MODEL WITH γ= 1

The Sullivan model with γ= 1 everywhere.
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Figure G.13: Us profile and similarity functions, Sullivan model with γ= 1, with ∆x = 6.25m
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Figure G.14: TKE and shear profile, Sullivan model with γ= 1, with ∆x = 6.25m
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Figure G.15: Us profile and similarity functions, Sullivan model with γ= 1, with ∆x = 12.5m
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(b) Shear profiles, ∆x 12.5m

Figure G.16: TKE and shear profile, Sullivan model with γ= 1, with ∆x = 12.5m
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Figure G.17: Us profile and similarity functions, Sullivan model with γ= 1, with ∆x = 25m
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Figure G.18: TKE and shear profile, Sullivan model with γ= 1, with ∆x = 25m

2 4 6 8 10

0

100

200

300

400

U (m/s)

z(
h

)

Hres DALES
Sullivan γ= 1 ∆x= 50m

(a) Uh pr o f i l e, ∆x = 50m

0 1 2 3 4 5 6

0

10

20

30

z/Λ

φ

1+5 z
Λ

φm

φh

(b) Similarity functions, ∆x = 50m

Figure G.19: Us profile and similarity functions, Sullivan model with γ= 1, with ∆x = 50m

0 5 ·10−2 0.1 0.15 0.2 0.25

0

100

200

300

400

TKE(m2/s2)

z(
m

)

Total
Resolved
Subgrid

(a) TKE profiles, ∆x 50m

0 1 2 3 4
·10−2

0

100

200

300

400

Shear(m2/s2)

z(
m

)

Total
Resolved
Subgrid
Sullivan

(b) Shear profiles, ∆x 50m

Figure G.20: TKE and shear profile, Sullivan model with γ= 1, with ∆x = 50m
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Figure G.21: Us profile and similarity functions, Sullivan model with γ= 1, with ∆x = 100m
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(b) Shear profiles, ∆x 100m

Figure G.22: TKE and shear profile, Sullivan model with γ= 1, with ∆x = 100m
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Figure G.23: Us profile and similarity functions, Sullivan model with γ= 1, with ∆x = 200m
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Figure G.24: TKE and shear profile, Sullivan model with γ= 1, with ∆x = 200m

G.3. SULLIVAN MODEL WITH SIMPLE MEAN SHEAR EDDY DIFFUSIVITY

The Sullivan model, with KH given by:

KH = (κ∆z)2

(φm(∆z))2

√
2〈Si j 〉〈Si j 〉 (G.1)
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Figure G.25: Uh profile and similarity functions, Sullivan model with simple KM , with ∆x = 6.25m
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Figure G.26: TKE and shear profile, Sullivan model with simple KM , with ∆x = 6.25m
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Figure G.27: Uh profile and similarity functions, Sullivan model with simple KM , with ∆x = 12.5m
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Figure G.28: TKE and shear profile, Sullivan model with simple KM , with ∆x = 12.5m
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Figure G.29: Uh profile and similarity functions, Sullivan model with simple KM , with ∆x = 25m
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Figure G.30: TKE and shear profile, Sullivan model with simple KM , with ∆x = 25m
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Figure G.31: Uh profile and similarity functions, Sullivan model with simple KM , with ∆x = 50m
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(a) TKE profiles, ∆x 50m
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Figure G.32: TKE and shear profile, Sullivan model with simple KM , with ∆x = 50m
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Figure G.33: Uh profile and similarity functions, Sullivan model with simple KM , with ∆x = 100m
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Figure G.34: TKE and shear profile, Sullivan model with simple KM , with ∆x = 100m
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Figure G.35: Uh profile and similarity functions, Sullivan model with simple KM , with ∆x = 200m
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Figure G.36: TKE and shear profile, Sullivan model with simple KM , with ∆x = 200m
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G.4. SULLIVAN MODEL WITH ADAPTED HEAT EDDY DIFFUSION

The combination of the original model by Sullivan, and the adaption to the eddy heat diffusion described in
Section 5.4.
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Figure G.37: Uh profile and similarity functions, Sullivan model with KH , with ∆x = 6.25m
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(a) TKE profiles, ∆x 6.25m
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Figure G.38: TKE and shear profile, Sullivan model with KH , with ∆x = 6.25m
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Figure G.39: Uh profile and similarity functions, Sullivan model with KH , with ∆x = 12.5m
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(a) TKE profiles, ∆x 12.5m
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(b) Shear profiles, ∆x 12.5m

Figure G.40: TKE and shear profile, Sullivan model with KH , with ∆x = 12.5m
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Figure G.41: Uh profile and similarity functions, Sullivan model with KH , with ∆x = 25m
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Figure G.42: TKE and shear profile, Sullivan model with KH , with ∆x = 25m
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Figure G.43: Uh profile and similarity functions, Sullivan model with KH , with ∆x = 50m
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Figure G.44: TKE and shear profile, Sullivan model with KH , with ∆x = 50m
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