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Abstract

Shallow cumulus clouds play an important role in the vertical transport of heat, moisture

and momentum in the atmosphere. However, due to their relatively small horizontal scales

they cannot be resolved explicitly in climate or weather forecasting models. The mass

flux parameterization is used to solve this problem. Our question is whether atmospheric

relative humidity influences the cloud dynamics and hence should be incorporated in pa-

rameterizations. To this end we have used a large eddy simulation model (LES) to see

how the cloud dynamics are affected when the mean atmosphere specific humidity and

mean temperature profiles are changed in such a way that the mean buoyancy remains

constant. We have also used the LES model to see what effect the surface fluxes of latent

and sensible heat have on the cloud dynamics. In particular, we have varied these surface

fluxes such that the surface buoyancy flux, to a good approximation remains identical, i.e.

the convective velocity scale is identical.

Our results show that mean atmospheric relative humidity does influence the cloud dy-

namics. The difference in cloud mass flux between the simulations is primarily determined

by the cloud fraction, which is related to the relative humidity; more moisture leads to

larger cloud fractions. Cloud vertical velocities need not be scaled; they seem to have the

same profiles. More humid environments lead to increased total and liquid water content,

increased entrainment and detrainment rates and at the same time more turbulent kinetic

energy is generated, thus the buoyancy flux is also affected. When trying to scale the latter

quantity following Grant and Lock (2004) we found that the convective available potential

energy (CAPE) must be submitted to severe scrutiny since CAPE is largely affected by

the mean atmospheric relative humidity.
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Chapter 1

Introduction

1.1 Cloud types

Foreigners coming to Holland often complain about the weather; the summer is chilly, it

is often windy, but above all; it frequently rains. Personally I have noticed that during

the autumn the following symbols are included in nearly every daily weather prediction:

a sun, a sky and some rain. Normally I experience only two of the three weather situa-

tions during a day; forecasting the weather is obviously not that easy. Since clouds are

the source of precipitation, we would like to know more about clouds, but what are they?

A cloud is a visible aggregate of tiny water droplets and/or ice crystals suspended in the

atmosphere and can exist in a variety of shapes and sizes. Some clouds are accompanied

by precipitation; rain, snow, hail, sleet, even freezing rain. All clouds are not alike, rather

they differ substantially.

There are different ways of classifying clouds. One approach refers to their appearance as

seen by an observer on the ground. Another approach is based on the dynamic characteris-

tics of clouds. Both approaches uses Latin for labeling purposes. The former classification

approach divides clouds into three broad categories. Following Salby (1996), they are (i)

stratiform, layered clouds, (ii) cumuliform, piled clouds, and (iii) cirriform, which means

fibrous. Below the latter classification will be given, following Houze (1993). The first

two cloud types mentioned are high-level clouds (cirriform clouds). Their cloud bases are

normally above 6000 meters, I. The next three are found at mid-altitude (’alto’ is Latin for

high) II, their cloud bases appear between 2000 and 6000 meters. The remaining five have

cloud bases found at low-altitude, i.e. up to 2000 meters. Note however, that cumulus and

cumulonimbus can become very tall, III.
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I

Cirrus : Detached clouds in the form of white, delicate filaments or white or mostly white

patches of narrow bands. These clouds have a fibrous appearance, or a silky sheen, or

both.

Cirrocumulus : These clouds are thin, white patches of cloud without shading and are com-

posed of very small elements. Their arrangement is more or less regular.

II

Cirrostratus : Transparent, whitish cloud with a smooth appearance, totally or partially

covering the sky.

Altocumulus : The color of this type of cloud is gray, white or something in between. They

are observed as patches, sheets or layers of cloud and are often accompanied by precipita-

tion.

Altostratus : A cloud type with uniform appearance; the color is grayish or bluish. This

type of cloud is usually thin, which allows sunlight to pass through.

III

Nimbostratus : These clouds have a gray appearance, often dark, and often seen to produce

rain or snow. ’Stratos’ is Latin for layered; the cloud fraction is close to unity; ’Nimbos’

means rain.

Stratocumulus : Again a cloud type whose cloud fraction is close to unity. They are gray

or whitish or both gray and whitish.

Stratus : The clouds are generally gray and have a fairly uniform base and they may pro-

duce drizzle, ice prisms or snow grains. The cloud fraction may also be unity; the difference

between stratocumulus and stratus is the cloud optical thickness ,τ . We are talking about

stratocumulus if 3 ≤ τ ≤ 23 and for τ ≥ 23 we are dealing with stratus.

Cumulus : Detached clouds; the cloud fraction is low. They can vertically develop into

domes or towers. A more detailed of this specific cloud type is given below, and in section

2 dynamics of cumuli are explained.

Cumulonimbus : These are dense clouds with a considerable vertical extent in the form of a

mountain or huge tower. Parts of their upper portion is usually smooth and nearly always

flattened. Because of high wind speeds at high altitudes, the clouds will be formed like

an anvil. The base is generally very dark and is frequently ragged. This type of cloud is

associated with powerful thunderstorms called supercells.
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Figure 1.1: Stratocumulus. Taken from http://copernic.udg.es.

1.2 Different clouds in Hadley circulation

Figure 1.2 shows a schematic of the Hadley circulation, which is important in climate

studies. Discussing this circulation is out of the scope of this thesis; instead we will for

reasons given in section 1.3 turn our attention to two of the three cloud types observed in

the Hadley circulation, the cumulus types.

If we subdivide cumuli into two categories by their roots, we count two classes. The idea

is as follows: say a parcel ascends undiluted from the surface layer and at some point the

parcel forcing exceeds a threshold value∗, then deep or shallow convection is initiated. If

this criterion is not met, the cumulus cloud must originate from higher levels. The second

class thus represents mid-level convection.

The second class, mid-level convection, have their roots not in the boundary layer but orig-

inate at levels above the boundary layer, often occurring in rain bands at warm fronts and

in the warm sector of extratropical cyclones. These convective cells are probably formed by

the lifting of low level air until it becomes saturated and the primary moisture source for

the clouds is from low-level large-scale convergence (Houze et al., 1976). Often a low-level

temperature inversion exists that inhibits convection from starting freely from the surface

and therefore convection seems to be initiated by lifting low-level air dynamically to the

∗For details see www.ecmwf.int/research.
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Figure 1.2: Schematics of the Hadley circulation.

level of free convection.

Deep convection, i.e. deep cumuli, are formed where equatorward flows of latent heat meet.

This zone is called the Intertropical Convergence Zone (ITCZ). In this area the clouds can

reach heights of more than 10km and these clouds consist for a substantial part of ice

particles. Deep cumuli are important in supplying energy to the Hadley circulation.

Shallow cumuli predominantly occurs in undisturbed flow, i.e. in the absence of large-scale

convergent flow. Typical examples are trade-wind cumuli under a subsidence inversion,

convection occurring in the ridge region of tropical easterly ways. Besides the presence of

shallow cumuli in the trade-wind region they can be observed over land during the day-

time. This type of convection is effectively controlled by subcloud layer turbulence. In

fact, most of the diagnostic studies carried out for trade-wind cumuli show that the net

upward moisture flux at cloud base level is nearly equal to the turbulent moisture flux

at the surface (Tiedtke, 1989, section 3d). Shallow cumuli enhance vertical transport of

heat and moisture, which again is important in large-scale atmospheric dynamics in ar-

eas above the oceans. Heat and moisture, in turn, are transported by the trade winds

into the ITCZ. Here the moisture is released as latent heat and acts as a building block

for deep convection, e.g. Siebesma and Holtslag (1996). Shallow cumulus clouds are the

most abundant of all tropical clouds (Johnson et al., 1999), and in the subtropics a sizable

fraction of stratocumulus are also underlain and sustained by shallow cumulus convection

(Norris, 1999). In terms of climate, the most important role of the cloud layer and its

associated turbulent circulations is in buffering interactions between the surface and free
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atmosphere (Siebesma et al., 2003). Shallow cumuli are locally also of importance; the

large-scale subsidence has a drying and warming effect on the boundary layer, which is

counteracted by cumuli vertical mixing (Siebesma, 1998; Grant and Lock, 2004).

Tiedtke (1989) distinguished between deep and shallow convection based on moisture con-

vergence and surface evaporation. The distinction has been modified to state that convec-

tion is deep if the cloud depth exceeds 200 hPa, and otherwise shallow.

1.3 Focus on shallow cumuli

It is well known that humidity plays an important role in the dynamics of deep cumuli

and in stratocumulus. Siebesma and Cuijpers (1995) compared fractional entrainment

and detrainment rates (see section 2.4) obtained from large eddy simulation (LES) studies

with those used in general circulation models (GCM) and found that the latter models

used fractional entrainment and detrainment rates being one order of magnitude too small.

Changes were implemented, but still fractional rates are prescribed as either being constant

or being a constant at the cloud base and then slightly changes linearly with height. Such

a parameterization can be improved.

Derbyshire et al. (2004) were the first to evaluate the sensitivity of cumulus convection to

humidity in the free troposphere by using cloud resolving models (CRMs). They compared

results with single column models (SCMs), hence their humidity profiles were chosen such

that intercomparison would be possible, yet realistic. To the best of our knowledge, such

sensitivity tests have not yet been carried out for shallow cumulus.

Based on the works of Grant and Brown (1999), Grant and Lock (2004) proposed for the

buoyancy flux in the cloud layer a scaling based on CAPE, the mass flux at the cloud base

and the cloud depth†. However, the effects of humidity are not incorporated, but as we

will show, humidity plays a role on the dynamics of clouds.

1.3.1 Research aim

The aim of this research is to better understand how atmospheric relative humidity affects

the entrainment rate in shallow cumuli. We hypothesize that

1. The relative humidity is important as one can argue that in a drier atmosphere the

breakup of clouds will be more rapid and formation of clouds will be suppressed.

†See sections 2.3 and 3.5
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2. The surface moisture flux is important since it is reasonable to assume that changes

in this property determines how much condensational heat can be released.

3. Based on our simulations, which should bring insight into the two above mentioned

arguments, we will try to figure out if the scaling proposed by Grant and Lock (2004)

works and try to figure out why (not).

In the remainder of this thesis we will discuss cumulus cloud dynamics and how they

are treated in GCMs (section 2). In section 3.1 the LES model is discussed followed by

some notes on BOMEX, which serves as our reference case. In chapter 4 the setup of the

sensitivity studies are presented with results, and in chapter 5 we discuss some results.

Finally, in chapter 6 the conclusions are summarized and recommendations are given.

This thesis makes vast use of classical thermodynamics, which is given in appendix A. The

governing equations as used in the LES model are explained in detail in appendix B.
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Chapter 2

Cumulus

In this section we will turn our attention to cumulus cloud dynamics. We desire to give

a non-mathematical description, but concepts such as stability and buoyancy can only be

understood with the aid of thermodynamics. Readers familiar with such can go to section

2.2.

2.1 Variables and equations

In appendix A and B the variables, governing equations and some derivations are described

in detail. Below we list the variables frequently used in the remainder of this thesis.

Consider a control volume consisting of a mixture of dry air and water vapor. Ice particles

could also be included but they are not abundant in shallow cumulus clouds and will

therefore be excluded in this study. The ratio of the water vapor to the total mass is called

the water vapor content and is denoted by qv. Similar ratios can be defined for liquid water

content and total water content, ql and qt, respectively. The latter quantity is the sum of

liquid water content and water vapor, qt = qv + ql.

To incorporate the effect of moisture on the density, the virtual temperature, Tv, is often

used.

Tv = T [(1− (1− Rd

Rv

qv)− ql]
∗ . (2.1)

The virtual temperature is the temperature that dry air must have to equal the density of

moist air at the same pressure. For instance, unsaturated moist air is less dense than dry

air at the same temperature and pressure, resulting in a higher virtual temperature.

The temperature of an air parcel changes when displaced vertically; pressure effects cause

∗See appendix B for definitions of cp, Rd and Rv
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the parcel to expand or compress. For this reason meteorologists also work with potential

temperature, which is defined as the temperature an air parcel would have if it were

expanded or compressed adiabatically from its existing pressure to a reference pressure.

An adiabatic process is a process in which there is no heat exchange between a parcel

and its surrounding. Mathematically the potential temperature and the virtual potential

temperature are written

θ = T

(
p0

p

)Rd/cp

and θv = Tv

(
p0

p

)Rd/cp

. (2.2)

The reference pressure, p0, is generally taken as 1000 hPa, which is the pressure near

the earth’s surface. In addition, we shall use the liquid potential temperature, which on

approximated form reads

θl = θ − lvql
cpΠ

where Π =
( p
p0

)Rd/cp , (2.3)

`v and cp are the latent of evaporation and heat capacity at constant pressure, respec-

tively. The strength of the liquid potential temperature is that it for adiabatic processes

is conserved, even under phase transformation.

2.2 A cumulus cloud is born

Let us first start by looking at how shallow cumulus clouds develop. In absence of precip-

itation, these clouds are also referred to as fair-weather cumulus.

It is commonly known that lighter fluids lay on top of heavier ones. When air near the

earth’s surface due to solar warming or stronger evaporation becomes warmer or moister

than the atmosphere above, its density will be lower than the air above it. So-called ther-

mals will start rising from the surface. A thermal is in fact a large eddy. How far a thermal

will rise depends on the density of the surrounding air. The environment, which is just the

ambient air, has a density which is determined by temperature and moisture. One variable

that incorporates both temperature and moisture is the virtual temperature, Tv. We will

now in two regions have a look at an unsaturated air parcel ascending from the surface. The

first region is the subcloud layer; we assume that the parcel is ascending adiabatically, i.e.

no mixing with the environment. We also assume that the air parcel immediately adapts to

the new pressure. It is straight forward to choosing a temperature and water vapor content

for a parcel such that the parcel has a lower virtual temperature than the environment,
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i.e. being denser, and whereby its ascent is suppressed. This is an uninteresting case; we

shall rather focus on the case where the parcel’s virtual potential temperature exceeds that

of the environmental. At the surface the particle will start ascending, following the dry

adiabatic temperature lapse rate, Γd. The temperature lapse rate is simply the rate of

change of temperature with respect to height†. When the environmental virtual potential

temperature lapse rate becomes positive, the parcel’s virtual potential temperature will

equal the environmental virtual potential temperature at some point. In figure 2.1 the

virtual potential temperature of the air parcel is plotted along with virtual potential tem-

perature of the environment. Before we continue the discussion on the rising air parcel,

please note the following: Firstly, in a stably stratified atmosphere the virtual potential

temperature increases with height. At night there is no input from the sun, rather energy

is emitted by means of longwave radiation. This ensures that the heaviest air remains at

the surface, which is a stable stratification. Secondly, if the atmosphere is unstable, i.e.

if the atmosphere is top-heavy, the virtual potential temperature decreases with height.

This is the case during day time when air close to the ground is more rapidly warmed up

by the sun. Finally, we say the atmosphere is vertically well mixed if the virtual potential

temperature is approximately constant with height. The different layers are sketched in

figure 2.1. Figure 3.5 also depicts the three different cases.

Let’s now return to our ascending parcel. If the virtual potential temperature of the en-

vironment and parcel are equal, the parcel is said to be neutrally buoyant. This level

is referred to as the ’level of neutral buoyancy’ (LNB). At this stage the particle has no

preferred vertical direction. Well, that is not completely true; during its ascent the parcel

has obtained vertical momentum, i.e. it shoots through the LNB. Its virtual potential tem-

perature has become less than that of the environment, and its vertical ascent is therefore

forced to a halt. The area in which the parcel now is, is called the convective inhibition

(CIN), see figure 2.3. However, if its vertical velocity is sufficiently large it reaches the

height at which the water vapor pressure equals the saturation pressure and becomes sat-

urated‡. This level is called the lifting condensation level (LCL) and denotes the base of

the cloud; the parcel has now become a cloud parcel. The rising air parcel has reached

the second region; the cloud region. The virtual potential temperature for an ascending

saturated parcel is not constant with height because phase change takes place. Moist air

condenses whereby heat is released, which is why the θv lapse rate increases with height.

†In this report the lapse rate of a quantity ψ is given by Γψ = −∂ψ
∂z .

‡A parcel becomes saturated when the partial water vapor pressure, e equals the saturation pressure,
esat, i.e. e/esat = 1. The latter equation can be approximated by qv/qsat = 1 where qv and qsat are the
specific humidities for water vapor and saturated vapor, respectively
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Figure 2.1: Depiction of a forced and an active cloud. In both cases the environment (fine line)
is just above the surface unstably stratified and then vertically well mixed. In the situation on
the left, above the mixed layer a stable stratification is found. In the right panel above the well
mixed layer is a conditionally unstable layer, i.e. the mean lapse rate of the rising parcel is larger
than the environmental lapse rate and smaller than the wet-adiabatic lapse rate. Before reaching
the conditionally unstable layer, the virtual potential temperature is conserved following a dry
adiabatic lapse rate but this changes when the parcel the lifting condensation level (LCL). At this
level clouds form and heat due to condensation is released, not to the environment, rather the heat
is kept within the parcel causing it to be warmer than the environment. In the domain between
the the limit of convection (LOC) and level of free convection (LFC) the parcel has a higher
virtual potential temperature than the environment. This virtual potential temperature excess
leads to production of vertical momentum. At the LOC the θv of the parcel and environment are
once more equal. LOC defines the top of the conditionally unstable layer.

The wet adiabatic lapse rate is also shown in figure 2.1. Note that the wet-adiabatic lapse

rate, applies to a parcel that does not mix with its environment and that the total water

content, qt, and the liquid potential temperature, θl, therefore are assumed constant. The

further evolution depends on the environmental lapse rate:

If the wet-adiabatic lapse rate of the environment is larger than that of the parcel, the

parcel will at all levels above LNB remain heavier than its surroundings and finally it will

start sinking. The resulting cloud is called a forced cloud and the atmosphere is absolutely

stable.

If on the other hand the lapse rate of the environment at some height is smaller than
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the parcel’s lapse rate, the parcel will again be positively buoyant. The requirement for

getting to this level, called the level of free convection (LFC), is that the parcel has gained

sufficient vertical momentum when it rose from the LNB to the LFC. The parcel is now

lighter than its surroundings and is free to ascend further. However, this cannot go on

forever; at the limit of convection (LOC) the parcel is again neutrally buoyant. It can

again overshoot this level and enter the inversion layer. This is the boundary layer’s ”lid”

and is very stable. The level at which the parcel again starts to descend dictates the cloud

top. A cloud formed following the second description is called an active cloud.

What it all boils down to, is whether the rising parcel keeps ascending as a consequence

of being positively buoyant with respect to the environment. It can be shown that this is

the case if the lapse rate of the particle is larger than the wet adiabatic lapse rate and at

the same time less than the dry adiabatic lapse rate.

Cumulus clouds are patchy clouds, like plumes rising in the skies. The amount of time

the ascending parcel can remain in a free convective state, i.e. how long it can continue

to rise, depends on the forcing of the thermal. The closer to the equator the larger the

forcing. The tallest cumulus clouds are found at these latitudes. However, according to

the classification above, such tall clouds are no longer called cumulus but cumulonimbus.

This is due to the fact that their vertical sizes are well beyond the typical boundary layer

depth.

The patchy structure implies that the mean relative humidity (RH), which is defined as

the ratio of the actual water vapor pressure to the saturation vapor pressure, is below 100

per cent§. To see this, picture a control volume containing some cumulus clouds. Inside the

clouds RH=100%, but since averaging over the control volume implies counting in areas

with no clouds, the relative humidity is lowered.

2.3 Convective Available Potential Energy (CAPE)

and buoyancy

Cumulus clouds do not only consist of ascending cloud parcels. In the core of the cumulus

cloud the parcels are ascending due to the fact that they are positively buoyant. The

buoyancy force is the force arising from the fact that the cloud parcel is lighter than its

§e/esat ≈ qv/qsat < 1
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Figure 2.2: Cumulus. Taken from www.capetownskies.com.

surroundings and is normally given by

b = g
θv,core − θv

θv
,

where θv,core and θv denote the parcel’s and the slab averaged virtual potential tempera-

tures, respectively. The convective available potential energy (CAPE) is used to estimate

the vertical velocity at the cloud top, as obtained through acceleration throughout the

cloud. Holton (1992) describes CAPE as follows: CAPE provides a measure of the maxi-

mum possible kinetic energy that a statically unstable parcel can acquire (neglecting effects

of water vapor and condensed water on the buoyancy), assuming that the parcel ascends

without mixing with the environment and instantaneously adjusts to the local environmental

pressure.

CAPE, denoted by an A, is given by the vertical integral of the buoyancy force, bounded

by limits between which the buoyancy force is positive, see the striped area in figure 2.3.

Mathematically, CAPE is given by

A =
g

θv

∫ LOC

LCL

(θv,core − θv)dz (2.4)

CAPE represents conversion of potential energy into kinetic energy; the typical velocity

scale, wCAPE, can be defined by assuming that all the potential energy is converted into

kinetic energy. Often (e.g. Holton, 1992) the following definition is used:

wCAPE = (2 · CAPE)1/2 (2.5)
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Figure 2.3: The virtual potential temperature for an adiabatically rising parcel (dashed) and its
environment (solid). The striped and dotted areas denote CAPE and CIN, respectively.

This can readily be derived from the following

dw

dt
= w

∂w

∂z
=
∂(1

2
w2)

∂z
= b⇒

1

2
w2 = Bdz .

Here we assume ∂/∂t = 0 and no horizontal advection of vertical velocity. Instead of

integrating to the limit of convection (LOC), we can integrate to any arbitrary height z̃,

yielding the vertical velocity scale at that height.

wz̃ =
√

2A . (2.6)

So far we have looked at undiluted cloud particles, whose trademark is that they are

positively buoyant. Paluch (1979) argued that mixing of cloud and environmental air
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happens at the cloud top, but more recently Raga et al. (1990) have showed that lateral

mixing occurs at all levels across the cloud boundaries. At the cloud edge cloud particles

thus may mix with the environment and loose their buoyancy. When mixing, particles

undergo evaporative cooling and may even become negatively buoyant with respect to the

clear environment, which is termed ’buoyancy reversal’. Bretherton et al. (2003) shows that

for a conditionally unstable atmosphere, mixing fractions¶ exist for which mixed parcels

will be negatively buoyant with respect to the environment. Lateral mixing of cloud air

with the environment makes the CAPE approximation less useful.

2.4 Cumuli in General Circulation Models

In operational weather prediction models and climate models, hereafter referred to as gen-

eral circulation model (GCM), typical grid distances vary between 10 and 100 km. The

maximum horizontal length scale for cumuli, on the other hand, is of the order of a kilo-

meter. Obviously, the resolution of GCMs is too coarse and the solution is to parameterize

cumulus clouds in GCMs. This means for instance that instead of explicitly calculating the

cloud fraction, reflected radiation etc, some (empirical) formula fitted to the observations

is used. Different types of parameterizations have been proposed; the way we will follow,

is the massflux approach as used by Siebesma and Cuijpers (1995) and Bretherton et al.

(2003). This involves coupling a simple cloud model to an algorithm for specifying an

upward massflux through the cloud base. The latter authors investigated to which extent

this approach is valid. The basic assumption behind the massflux approach is that the ver-

tical turbulent transport can be described in terms of cumulus updrafts and compensating

environmental subsidence.

The vertical turbulent flux of an arbitrary field ψ can be split into three parts

w′ψ′ = σ(1− σ)(wc − we)(ψc − ψe)

+ σw′′ψ′′c

+ (1− σ)w′′ψ′′e .

(2.7)

0 ≤ σ ≤ 1 is the cloud fraction and wc and we are the vertical velocities of the cloud and

environment, respectively. The overbar denotes slab-averaging over the entire domain or,

with superscript, over the cloud (environment). The last two term represents the sub-plume

fluxes; they are due to the contributions of perturbations with respect to the conditionally

¶The mixing fraction χ defines the ratio of the environmental air me to the total air mass mc+me, i.e.
χ = me/(mc +me)
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sampled mean (see section C).

The massflux is now defined as

Mc ≡ σ(wc − w) = σ(1− σ)(wc − we) . (2.8)

More formally, the massflux should be multiplied by the density of air but since the density

in the planetary boundary layer is approximately constant we will for the sake of notation

leave it out.

As stated above, what goes up inside the cloud must come down on the outside. This is

ensured by the continuity equation, which for the massflux is given by

∂Mc

∂z
= −∂σ

∂t
+ E −D . (2.9)

Here E and D are the lateral entrainment and detrainment rates, respectively. The frac-

tional entrainment and detrainment rates, ε and δ are respectively given by

ε =
E

Mc

and δ =
D

Mc

.

Lateral entrainment is defined as a one-way process in which environmental air is laterally

entrained into the updraft at some specified rate per unit height, regardless of the buoyancy

of any intermediate mixtures produced (Arakawa and Schubert, 1974). In the massflux

approach the tendency equation for the mean of an in-cloud quantity, ψc, can be written

∂(σψc)

∂t
= −∂(Mcψc)

∂z
+ Eψe −Dψc + σSψ,c , (2.10)

where Sψ,c is a source / sink term. Assuming that the source / sink term is zero, Sψ,c = 0,

that the temporal change of the in-cloud mean is very small, ∂(σψc)/∂t ≈ 0, and that in

equation (2.9) the cloud fraction does not change with time, ∂σ/∂t = 0, we can obtain the

following two expressions for the fractional entrainment and detrainment rates, respectively

E

Mc

≡ ε = −∂ψc/∂z
ψc − ψe

(2.11)

which when inserted in equation (2.9) and assuming ∂σ/∂t = 0 yields

D

Mc

≡ δ = ε− ∂ lnMc

∂z
(2.12)

Several entrainment parameterizations based upon some form of the cloud kinetic energy

budgets have been proposed. Grant and Brown (1999) suggested to use the following fixed

entrainment rate for the whole cloud layer

ε = CE
A

MbZcld
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where CE represents the fraction of the TKE production that is available for entrainment.

CE ∈ [0, 1] is a constant to be determined and Mb is the massflux at the cloud base,

and A is the convective available potential energy. By using the Met Office Large Eddy

Simulation (LES) model, they found a typical value for CE to be 0.03. Results from LES

simulations show, however, that CE decreases with height. Siebesma (1997) suggested to

write the fractional entrainment rate as

ε =
1

wc

(
∂wc
∂z

)
which is derived from the mass-continuity equation and ignores variations in density and

assumes the cloud fraction to be constant with height. Gregory (2001) suggested to pa-

rameterize the entrainment rate in the following way:

εw2
c = Cεag

[Tc − Te
Te

− ql
]c

where a is a constant.

Siebesma et al. (2004) discuss problems in transferring findings of Single Column Models

(SCM) / Cloud Resolving Model (CRM) / Large Eddy Simulation (LES) studies to GCMs.

The problems are partly due to the fact that feedback processes may be switched off in

SCMs/CRMs/LESs and that the latter use prescribed large-scale conditions that may be

non-representative for both the real and model atmospheres.

Next, the GCMs may give faulty results. For instance, Siebesma et al. (2004) reports

that for longwave radiation in some of the models involved in EUROCS‖ under-predict

both cloud fraction and cloud amount in the stratocumulus regions while the situation is

opposite in the trade wind region and the tropics where cloud fraction and cloud amount

are over-predicted by most models. This illustrates why parameterizations need to be

improved and we hope that our research can help the improvement progress.

‖EUROpean Cloud Systems Study, see also www.knmi/samenw/eurocs
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Chapter 3

A Large Eddy Simulation Approach

to BOMEX

3.1 Large Eddy Simulation

As mentioned in the introduction, thermals have different length scales, ranging from the

Kolmogorov microscale O(1mm) to the scale of the boundary layer O(1km). In an ideal

world, the governing equations could be simulated using direct numerical simulation (DNS).

However, that requires 1000 · 1000 · 10001000 = 1015 gridpoints (x-direction × y-direction

× depth) for simulating a column of air with unit area and a height of 1 km. Even the

best computers in the world are incapable of performing such a simulation. The solution

is to look at large-scale eddies. As it turns out that, in general, turbulent flows distinguish

themselves by the specific structure of the larger scale eddies because those large scale

eddies are sensitive to their particular environment and especially to the buoyancy forcing.

Moreover, they are responsible for the bulk of the transport of heat, momentum and

moisture. The smaller scale eddies, on the other hand, are generally assumed to behave

independently. The idea is thus to choose the grid spacing small enough such that the

largest eddies are explicitly resolved and the small scale processes are parameterized. This

method is termed Large Eddy Simulation (LES).

3.1.1 Notation

From cloud data, either numerical or from observations, usually a slab-averaged mean and a

in-cloud mean are computed. To better understand the difference, imagine that we sample

values for a quantity ψ inside and outside a cloud. For ψ = w this is pictured in figure 3.1;
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the mean vertical velocity inside the cloud, wc, is different from the mean vertical velocity

of the environment, we. Perturbations with respect to the mean in-cloud value are denoted

Figure 3.1: An example of the vertical velocity field at one height, and one latitude only. Data
are from our LES simulation of BOMEX (see below). Cloud points are denoted by diamonds,
environment point by stars. The dotted line is the cloud-mean vertical velocity, the dotted-dashed
line is the environmental mean and the dashed line is the slab-averaged value. Note that in order
to show a two dimensional plot we had to choose one single latitude. This implies that averaged
values are not slab-averaged, rather latitudinally averaged (in contradiction to normal .

by w′′, and w′ denotes deviations with respect to the slab-averaged mean.

We distinguish between resolved and subgrid scales. The resolved part of an arbitrary

variable ψ is denoted by 〈ψ〉; subgrid terms are denoted by a double prime. Only fluxes
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have subgrid component. Slab-averaged fluxes are denoted by an overbar. With this

notation, the horizontally averaged vertical flux at an arbitrary height, is given by

w′ψ′ =
1

NxNy

Nx∑
i

Ny∑
j

(
wij − w)

(
ψij − ψ

)
where the summation is performed over a horizontal plane with NxNy grid points and the

indexes i, j denote the respective values of w and ψ at the gridpoints.

3.1.2 Equations

After having discussed different variables, we have finally arrived at our most important

tools; the governing equations. They are explained in detail in appendix B. The filtered

LES equations are

∂〈ψ〉
∂t

+
∂(〈ui〉〈ψ〉)

∂xi
= −∂〈u

′′
iψ

′′〉
∂xi

+ Sψ (3.1)

∂〈ui〉
∂t

+
∂(〈ui〉〈uj〉)

∂xj
= g

〈θv〉 − θv

θv
δi3 −

∂〈π〉
∂xi

− ∂τij
∂xj

. (3.2)

where 〈u′′iψ′′〉 indicate correlations due to fluctuations on subgrid scales, i.e. scales smaller

than the grid distance. In equation (3.1) ψ can represent the total water specific humidity

qt, or the liquid water potential temperature θl. ui are the three components of the velocity

vector ~u = (u, v, w), π is the modified pressure, τij the stress tensor, g is the gravitational

constant, and θv and θv are the virtual potential temperature of a parcel and of the mean

state, respectively. Equation (3.2) is the filtered Navier-Stokes equation. Filtered means

that the equations are discretized, i.e. at each grid point for the large eddies the prognostic

equations for θl, qt (u, v, w) and continuity are solved together with the ideal gas law.

Properties on the yet smaller, unresolved scales include the viscous dissipation, which is

negligible small outside the viscous sublayer near the surface. The stress tensor in equation

(3.2) is given by

τij = 〈u′′i u′′j 〉 −
2

3
δij〈e〉 (3.3)

〈e〉 =
1

2
〈u′′ku′′k〉 , (3.4)

where 〈e〉 is a subgrid turbulent kinetic energy term or also called generalized subgrid

normal stresses in this case.
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3.2 Closure

The purpose of using an LES model is to resolve the largest eddies and use parameteriza-

tion for the smaller ones. Generally, a set of n equations can only be solved if we have n

unknowns; no more, no less. When gathering information from measurement campaigns,

we usually get more data than necessary; the set of equations is said to be overdetermined.

If on the other hand we have less equations than variables, we need to make some approx-

imations in order to solve the set of equations; i.e. we make approximations in order to

close the set of equations.

The last term on the right hand side of equation (3.2) is the stress tensor τij, which needs

to be parameterized and is done by first order closure:

τij = −Km

(∂〈uj〉
∂xi

+
∂〈ui〉
∂xj

)
(3.5)

Here Km is a scalar with units m2s−1. For positive Km, equation (3.5) implies that the flux

flows down the local gradient of ui and uj. This closure approximation is often called gra-

dient transport theory or K-theory. The first term on the right of equation (3.1) represents

a subgrid flux and first order closure is also applied here:

〈u′′jψ′′〉 = −Kψ

(∂〈θl〉
∂xj

)
. (3.6)

ψ can either be one of the two conserved quantities θl or qt. Km and Kψ are functions

of position and are determined from subgrid turbulent kinetic energy (TKE) and a length

scale l. The prognostic equation for the subgrid TKE is given by:

∂〈e〉
∂t

+ 〈uj〉
∂〈e〉
∂xj

=
g

θv
〈θ′′vu′′i 〉δi3 − τij

∂〈ui〉
∂xj

− ∂

∂xj

[1

2
〈u′′i u′′ju′′i 〉

]
− 1

ρ0

∂〈p′′u′′i 〉
∂xi

+
∂

∂xj

[
ν〈u′′i

∂u′′i
∂xj

〉
]
− ν

〈(∂u′′i
∂xj

)2
〉 . (3.7)

The two terms on the left are the only terms that can be calculated directly. On the right

hand side terms are closed using K-diffusion in the following way

〈u′′iψ′′〉 = −K〈ψ〉
∂〈ψ〉
∂xi

Kψ =
√
〈e〉l

where l is a length scale often related to a representative grid mesh size, see VanZanten

(2000). The turbulent kinetic energy depends on position thus does the diffusion coefficient

first introduced in equation (3.5) also depend on position.
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Figure 3.2: Control volume depicting where different quantities are calculated.

3.3 Numerics

The horizontal domain in our simulations is split in 64 × 64 grid elements and the distance

between two successive grid points is 100 meters. In the vertical there is a total of 75 levels

with a grid distance of 40 meters. Now consider a control volume as depicted in figure

3.2. The resolved horizontal velocity components are defined on the sides of the control

volume. In the center of the grid box the resolved pressure, subgrid turbulent kinetic

energy, liquid water potential temperature, the specific humidity and exchange coefficients

are calculated. At the bottom of the control volume the resolved vertical velocity are

computed. Quantities in the center of the box are said to be computed at full level. Half

level, quantities are computed in between the full level quantities, see also figure B.1. For

instance, the vertical velocity is computed at the bottom of the control volume and is thus

a half-level quantity.

In numerical computations special care has to be taken for computations at the edges of

the domain. For instance, when computing the horizontal gradient at the boundary, the

value of a non-existing control domain is needed, see figure 3.3. One way to solve this

problem is to let the domain be periodic, ψi,yN
= ψi,y1 , where N is the highest index in

the y-direction. When imposing periodic boundary conditions, the stability criteria of the

numerical computation can be found∗. Finally, at the surface and at the model top, the

resolved vertical velocity is set equal to zero. Perturbations in the mean fields propagate

by means of gravity waves. These gravity waves also travel upward and to ensure that they

are not artificially reflected at the model top, a sponge layer is present at the model top.

∗Durran (1998) gives a thorough introduction to numerical geophysical fluid dynamics
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Figure 3.3: The (centered) gradient at point d is determined by df and dx computed from
neighboring gridpoints. Cyclic boundary values removes the problem of constructing a gradient
in point a.

3.4 Barbados Oceanographic and Meteorological Ex-

periment

When the Barbados Oceanographic and Meteorological Experiment (BOMEX) was an-

nounced, it was unprecedented in size and sophistication and was to that date the most

difficult single effort undertaken to understand the weather (Carter, 1969). It costed 18-

million dollars and made use of eight satellites, 24 aircrafts, ten ships and a dozen instru-

mented buoys.

The experiment was a part of the Global Atmospheric Research Program (GARP) and the

goal of BOMEX was to gain new understanding of the interaction of the air and tropical

oceans, which is important in determining the atmospheric circulation. BOMEX aimed at

investigating in detail the exchange of energy between ocean and atmosphere and the ver-

tical and horizontal spreading of these energies. The spreading is important to understand

since the earth absorbs most of its energy at low latitudes but emits energy at all latitudes.

During BOMEX, which took place during May and June 1969, four ships formed the

corners of an square with a perimeter of about 500 km. Observations on temperature,

humidity, wind velocity, cloudiness, etc were made. In the analysis of the budgets of mass,

water vapor and heat, the boundary layer up to approximately 4000 meters (700 mb) was

divided into four sublayers (Holland and Rasmusson, 1973; Nitta and Esbensen, 1974).

These four layers are the mixed layer, the cloud layer, the inversion layer and a layer from

the inversion top to the 700 mb level. The analysis showed that under well-developed trade-
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wind conditions with little cloud activity, there is horizontal divergence in mixed layer and

cloud layer. The horizontal divergent layer is separated by the trade-wind inversion from

a convergent layer above.

3.5 Simulation of BOMEX

Siebesma and Cuijpers (1995) used an LES model to simulate observations as obtained

from the third phase of BOMEX. Averaging observations from the four ships was not

feasible since the temporal and spatial variations of the fields were such that no inversion

could be seen. Instead they therefore chose to simulate the mean profile of one individual

ship. They used a computational domain of 6.4 × 6.4 km2 in the horizontal and 3 km in

the vertical. At each grid point they solved a set of prognostic equations. The variables

are the three components of the velocity field ~u, the liquid water potential temperature θl,

the total water specific humidity qt, and the TKE. Initial profiles from BOMEX can be

found at www.knmi.nl/ siebesma/gcss/bomex.html and a thorough description of BOMEX

is given by Holland and Rasmusson (1973) and Nitta and Esbensen (1974).

In our simulations we have used the same model but set the relatively small radiative forcing

to zero. This change is responsible for small differences. In figure 3.4 we compare the cloud

fraction and the cloud vertical velocity, the cloud decomposition has been applied. We see

that the radiative forces do influence the outcome of both quantities, but the extrema are

the same. In figure 3.4(b) the flucutations in the cloud top are due to the low number of

statistical points.

3.6 Turbulent fluxes in cumulus cloud layers

For i = 3, the last term on the right hand side of equations (3.1)-(3.2) constitute the

vertical fluxes of temperature, water and momentum, respectively. Let’s try to picture

what a flux is: say that a particle at height z1 has a property ψ
′
with respect to the slab-

averaged value ψ
∣∣
z1

at that height. Due to turbulent fluctuations in w′, the particle may

be displaced upward or downward depending on the sign of w′. If the particle is displaced

upward to height z2, it will bring with it the quantity ψ
′
. Unless ψ

′
= ψ

∣∣
z2

the mean

value for ψ at height z2 is thus changed. Before discussing the physical meaning of w′ψ′ ,

ψ ∈ {θ, qi, ui} we have to introduce the tendency equation

∂ψ

∂t
= −∂w

′ψ′

∂z
+ Sψ , (3.8)
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(a) Cloud fraction (b) Mean cloud vertical velocity

Figure 3.4: Results from Siebesma and Cuijpers (1995) compared to own results; (a) cloud
fraction and (b) the cloud vertical velocities, both under the cloud decomposition. Time averaged
over the third hour, see page 28 for motivation. Line styles according to legends.

where Sψ represents the net of sources and sinks, and we have neglected mean advection.

In case of no sources and sinks this equations states that the temporal change in the mean

of variable ψ is related to the vertical gradient of the flux w′ψ′ . For instance, if the flux is

positive but constant with height, then obviously what is ’lost’ to heights above will also

be gained from lower height. Logically this means that the net effect vanishes.

Explaining the vertical flux of potential temperature, w′θ′, is the best facilitated by us-

ing an example. In figure 3.5 three different potential temperature profiles are sketched.

In the first case, a particle originating from a lower height will have the same potential

temperature as the environment at its new height. If on the other hand the atmosphere

is unstably stratified, the particle displaced upward will at the new level be warmer than

the environment. In the last case, a cold particle is pushed up into a warmer environ-

ment. This stipulates how turbulent motion can affect the mean temperature; properties

are transported from one level to another and its effect is to smoothen the temperature

profiles.
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Figure 3.5: Three different temperature profiles; a well mixed (1), an unstably stratified (2) and
a stably stratified (3) atmosphere.

Momentum fluxes are relevant to the subgrid TKE; the three fluxes u′iu
′
jδij constitute the

transport of (co)variance, which is related to the subgrid TKE, see equation (3.4). The

vertical velocity variance w′w′ in clouds is larger than outside the clouds (e.g. Rodts, 2001),

which implies that clouds more effectively dissipate energy.

Lastly we notice that w′θ′v in the subcloud layer, i.e. q + l = 0, has contributions from the

temperature- and moisture fluxes, i.e.

w′θ′v ≈ (1 + 0.61q)w′θ′ + 0.61θ w′q′

This flux constitutes the supply of buoyancy.
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Chapter 4

Setup of sensitivity experiments

In this section two different sets of simulations are described. In each set, we start by

explaining the initial profiles followed by the results, which are analyzed in chapter 5.

Since the massflux is determined by the product of the mean in-cloud vertical velocity wc,

and the cloud fraction σ, we will focus on these quantities and also the quantities that

determine wc and σ. The cloud vertical velocity is well related to the buoyancy, θv, and

likewise is the velocity variance w′w′, which in the cloud layer is the dominant contribution

to the turbulent kinetic energy, produced by the buoyancy flux w′θ′v. For convenience,

when we hereafter refer to the cloud velocity we implicitly refer to the vertical velocity,

both notations will be used interchangeably. Likewise, when talking about the massflux

we refer to the vertical massflux of clouds. Of the quantities specifying the cloud fraction

we will focus on the total and liquid water content, qt and ql, fractional entrainment and

detrainment rates, ε and δ, total water flux w′q′t, and the relative humidity RH.

The outputs from the LES model are averaged over 10 minutes. Especially fluxes vary

notably in 10 minutes and to reduce such fluctuations we have averaged the profiles over

one hour; unless stated otherwise the averaging takes place over the third hour. The

motivation for this choice is that during the two first hours there is a large spin-up and

when running the model for too long the θv profiles start diverging.

Sampled results like the cloud fraction and massflux are only meaningful in the cloud

domain. In order to better compare these results we have plotted such quantities with a

vertical offset; i.e. we have vertically displaced the profiles in such a way that the cloud

bases from the different simulations all coincide. At the cloud top the cloud dynamics are

less reliable because of few sampled points so when using a vertical offset we only show the

first 1000 meters of the cloud layer and the zero-level denotes the cloud base.

Siebesma and Cuijpers (1995) argued that the cloud core decomposition gives the best
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turbulent flux approximations. Our analysis will be based on both the cloud and cloud

core decompositions but unless the cloud core decomposition results bring different results

from the cloud decomposition, only the latter will be shown. Note that when using such

sampling we denote cloud mean values by a subscript, for instance is the mean cloud

vertical velocity denoted wc.

4.1 Humidity effect

4.1.1 Initialization

The driving force of cumulus clouds is the buoyancy, which is determined by the temper-

ature, water vapor and liquid water content. We are interested in studying how a drier

atmosphere, though with an unchanged mean buoyancy with respect to BOMEX, influ-

ences rising thermals. To this end we changed over the entire vertical domain the initial

total water content profiles and adjusted the potential temperature accordingly; the virtual

potential temperature remains unchanged if a lower (higher) qt is accompanied by a higher

(lower) θ according to

dθ =
−εθdqt

(1 + εqt + εdqt)
, (4.1)

where ε = 0.61, dqt and dθ are changes in total water content and potential temperature,

respectively. To see how this expression comes about, let θv,B and θv,H be the virtual

potential temperatures of BOMEX and the sensitivity case, respectively. They read

θv,B = θB(1 + εqt,B) and θv,H = (θB + dθ) [1 + ε (qt,B + dqt)]

Equating these two expressions yields

−dθ − εqt,Bdθ − εdqtdθ = εθBdqt

which reduces to (4.1). Note that the initial profiles prescribe unsaturated conditions,

i.e. ql = 0, hence qv = qt. Figure 4.1 shows the initial qt and θ profiles. In this set

of experiments, 7 sensitivity simulations were carried out. However, two of these yielded

forced cloud (dqt=-1.5 and -3g kg−1, respectively) and one resulted in a stratocumulus cloud

deck (dqt=+1.5g kg−1). These three simulations will not be treated in the remainder of

this report. The initial change in qt ranges from -0.4g/kg to 0.7g/kg with an accompanying

change in θ ranging from 0.07K to -0.13K. More details are given in table 4.1.
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(a) θ (b) qt

Figure 4.1: Initial profiles of θ, (a), and qt, (b). Line styles according to legend.

4.1.2 Results from changing humidity

We begin by displaying the cloud fraction σ; figure 4.2 shows that simulations with more

humid initialization profiles have cloud forming at lower heights and grow taller. Note

also that the maximum cloud fractions of the different simulations differ only slightly.

The setup was such that when we made the atmosphere more humid we also lowered the

temperature, i.e. we brought the mean atmosphere closer to saturation. Intuitively this

should lead to more total and liquid water content. Figures 4.3(a) and 4.3(c) verify our

assumption. A change of initial mean total water content prevails after three hours of

simulation. The profiles in the cloud layer have crept a bit toward each other, though.

This we can explain by looking at the tendency equation for the total water content flux,

see figure 4.3(b). In the subcloud layer the w′q′t profiles coincide whereas in the cloud layer

they diverge significantly. The driest cases have the steepest vertical gradient of w′q′t in the

cloud layer, i.e. the time rate of change of qt is the largest. The larger w′q′t fluxes in the

cloud layer are due to qt differences in the subcloud layer; the moist cases produce moist

thermals that bring about large w′q′t fluxes in the cloud layer. The fact that the qt profiles
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Name Description dθ [K] dqt [g/kg]

BOMEX 0 0

Hum1 Drier and warmer 0.04 -0.2

Hum2 Drier and warmer 0.07 -0.4

Hum3 More humid and colder -0.13 0.4

Hum4 More humid and colder -0.07 0.7

Table 4.1: Description of the simulations included in the set of humidity experiments.

(a) Cloud core decomposition (b) Cloud decomposition

Figure 4.2: The slab-averaged profiles of the cloud fraction using cloud core decomposition (a),
and the cloud decomposition (b). Profiles averaged over the third hour. Line styles according to
legends.

converge suggests that the cloud dynamics force the state of the cloud layer toward the

BOMEX state. The effect of an initial increase in mean qt is displayed very well in figure

4.3(c); the slab-averaged profiles of the liquid water content, ql, differ significantly. The

saturation water content is the explanation; we have increased qt and at the same time
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lowered the mean temperature, i.e. the atmosphere is closer to saturation.

Now having covered the cloud properties that follow from intuition we go on to the key

element in this research; namely the buoyancy. We stress again that the initial mean

buoyancy profiles were the same as for BOMEX and if the mean buoyancy solely dictates

all cloud dynamics then the θv profiles after three hours of simulation should all coin-

cide. In figure 4.4 the slab-averaged virtual potential temperature, θv, and the virtual

potential temperature flux, w′θ′v, are plotted. The figure shows that the buoyancy pro-

files have changed after three hours of simulation, hence implying that CAPE does not

determine the cloud dynamics alone. During the two first hour of simulation the atmo-

sphere is in a spin-up state and simulating longer will make these profiles diverge more,

hence our choice of time averaging. The driest cases have the highest excess mean virtual

potential temperature with respect to BOMEX. The driest case has also the steepest ver-

tical θv gradient in the lower part of the cloud layer. We have calculated ∂θv

∂z
for Hum2,

BOMEX and Hum4 for the bottom part of the cloud layer (∼200 meters deep). They

are 2.1Kkm−1, 1.6Kkm−1 and 1.6Kkm−1, respectively. This shows that, albeit small, the

vertical gradients of θv differs from simulation to simulation and that the driest case has

the less conditional unstable configuration; a rising parcel is said to be conditionally un-

stable if its virtual potential temperature lapse rate is between the dry and wet adiabatic

lapse rate, i.e. if Γdry > Γ > Γwet. Typical values for these lapse rates under adiabatic

conditions are 10Kkm− and 5Kkm−1, respectively. Obviously there is a large difference

between those highly idealized rising parcels and the true atmosphere; we elaborate more

on this issue in section 5.3. The vertical flux of virtual potential temperature, w′θ′v, is

proportional to the buoyancy flux, which powers the development of clouds. In the sub-

cloud layer the w′θ′v fluxes do not coincide; we note that the moist simulations have the

steepest gradients in this layer, i.e. during the third hour of simulation more ’cloud fuel’

(whereby we picture the buoyancy to be the cloud engine) is pumped into the cloud region.

This difference in supply of ’cloud fuel’ explains why the θv profiles do not coincide; at

the cloud base the buoyancy flux has a minimum whereafter it remains negative in a thin

layer. In that thin vertical domain a rising cloud parcel is in the CIN domain; the vertical

velocity is positive but negatively buoyant with respect to the environment. The more

humid simulations have larger maximums in the cloud layer and their w′θ′v profiles are less

dampened. This dampening, i.e. the profiles going to zero with height, is related to the

production of turbulent kinetic energy. The θv profiles for the most humid simulations are

less curved because turbulence has caused the profiles to be smoothened out in the vertical.
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(a) qt (b) w′q′t

(c) ql

Figure 4.3: The slab-averaged profiles of (a) the total water content qt, (b) the total water
content flux w′q′t, and (c) the liquid water content ql. Line styles as in 4.2(a).
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(a) θv (b) w′θ′v

Figure 4.4: The slab-averaged virtual potential temperature θv (a) and virtual potential tem-
perature flux, w′θ′v (b). Line styles as in figure 4.2(a).
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If turbulence is responsible for smoothening out the θv profiles then we must expect of

the TKE to increase with increased mean atmospheric humidity; figure 4.5 shows that this

is indeed the case. The terms u′ku
′
k (k = 1, 2, 3) are velocity fluctuation variances and their

sum is the turbulent kinetic energy. From the large (resolved) scale, energy is passed on

to small scale eddies. This is the energy cascade,which works as a brake on the in-cloud

vertical velocity and hence also on the massflux. From figures 4.5(a)-4.5(d) we see that

the three contributions to the TKE are of the same order. The figure indicates that the

velocity variances in all directions are of the same order of magnitude. The most humid

simulations generate more TKE, which over a depth of ∼1000 meters in the cloud layer

stays constant. This constancy is also found in all three u′ku
′
k terms.

Turbulence is the physical mechanism behind lateral entrainment and detrainment, ε and

δ, respectively. The fractional entrainment and detrainment rates of θl are calculated by

equations (2.11) and (2.12), respectively, and are shown in figure 4.6 with a vertical offset.

Both cloud and cloud core decompositions are shown. Instead of using the one hour time

averaged values we have computed the entrainment using the ten minute averaged values

six times and then averaged. Evidently the smaller the TKE the smaller ε becomes. The

way θl in the cloud is sampled (at each level where there is no cloud θl is set to zero) causes

numerical problems when calculating ∂ψc

∂z
in equation (2.11); the vertical gradients blow up

at the cloud base and cloud top. Due to the way of sampling we also get ∂ψc

∂z
< 0, which

implies that the entrainment rate becomes negative. This is not physical and hence only

positive entrainment rates are plotted and values around cloud top and base are left out.

The results clearly show that the humidity of the atmosphere influences ε and δ; the driest

simulations have the lowest entrainment rates and hence the largest detrainment rates. To

use a more intuitive example, picture at the cloud edge a cloud parcel which has a low

liquid water content. When mixing with the environment this small amount of ql easily

evaporates and thus leads to a larger detrainment rate.

We have finally arrived at the mean cloud vertical velocity, which multiplied by the cloud

fraction gives the cloud massflux. In figure 4.7 these latter three quantities are shown with

a vertical offset. It is remarkable how the vertical velocity profiles coincide in the lower part

of the cloud layer. When applying the cloud core decomposition the wc-profiles coincide

even better (not shown). Since the wc-profiles coincide so well the differences in massfluxes

must primarily be ascribed to the differences in cloud fraction, which is also confirmed by

the figure. The velocity fluctuations in the top part of the cloud layer is attributed to the

low number of cloud points in the sample.

So far we have concluded that the mean buoyancy profiles do not coincide after three

hours of simulation and that the massflux is influenced by the mean atmospheric relative
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(a) u′u′ (b) v′v′

(c) w′w′ (d) TKE

Figure 4.5: The u′u′ (a), v′v′ (b) and w′w′ (c) contributions to the TKE (d). Line styles as in
figure 4.2(a).
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(a) Cloud decomposition (b) Cloud core decomposition

(c) Cloud decomposition (d) Cloud core decomposition

Figure 4.6: The fractional entrainment rate ε using the cloud decomposition (a) and cloud core
decomposition (b) together with fractional detrainment rate δ with the same decompositions, (c)
and (d) respectively. See text for remarks on time-averaging. Line styles as in figure 4.2(a).
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(a) Mean cloud velocity wc (b) Cloud fraction σ (c) Cloud massflux Mc

Figure 4.7: The vertical velocity (a), the cloud fraction (b) and the massflux (c). Cloud
decomposition with an offset has been used. Legends as in 4.2(a).

38



(a) Slab-averaged relative humidity (b) RH vs σ

Figure 4.8: The slab-averaged relative humidity (a) and cloud fraction as function of relative
humidity (b). In the latter subplot the points with high RH but zero cloud fraction are points
just below the cloud base. The three outlyers laying clustered together around RH = 0.95 are
points exactly at the cloud base. Line styles as in figure 4.2(a) and symbols according to legends.
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humidity, RH. The latter property is a measure of cloud forming probability. The slab-

averaged relative humidity is plotted figure 4.8(a). When increasing the initial total water

content we should intuitively expect of the cloud forming probability to increase. A scatter

plot of RH versus σ is shown in figure 4.8(b). The plot shows a sharp increase in cloud

fraction when the relative humidity exceeds 90%. In the relative humidity domain shown,

the symbols from the different simulations can be connected by a line; a polynomial line

should do the job. In that way σ can be parameterized. This may be of interest in GCMs

since the vertical velocity profiles coincide to a good degree, the mass flux is a function of

σ, which in turn is a function of RH. We note furthermore that at high relative humidities

the figure shows points with no cloud fraction. These are the points just below cloud base,

i.e. just below the zero-level in subplot (a). The three outlyers clustered around RH = 0.95

are points exactly at the cloud base. According to the figure, the most humid simulations

have low cloud fractions relative to the RH; those points are however points near the cloud

top where the relative humidity is high, yet the cloud fraction is small.

4.2 Surface flux effect

4.2.1 Initialization

In the subcloud layer the convective scaling velocity is given by

w3
∗ = 2.5

g

θv

∫ Cloud base

Surface

w′θ′vdz , (4.2)

(see Grant and Lock, 2004), who also uses this quantity when trying to scale the buoyancy

flux. In operation models, such as European Center for Medium range Weather Forecasting

(ECMWF), use the convective scaling velocity in cloud parameterizations but is it influ-

ences by the surface fluxes? The virtual potential temperature flux is controlled by the

potential temperature flux and the moisture flux, also called the sensible heat and latent

heat flux, respectively:

w′θ′v = (1 + εqv)w′θ′ + εθ w′q′t .

The idea behind this set of simulations is to see how the surface conditions can alter

the cloud dynamics; we have changed the surface flux of water vapor w′q′t0 (remember

that qt = qv under unsaturated conditions) and adjusted the surface flux of potential

temperature w′θ′0 in such a way that the virtual potential temperature flux at the surface,

w′θ′v0, is unchanged with respect to the reference case. Subscript 0 denotes surface value.

Since w′θ′v decreases linearly this implies that w∗ is kept constant. The relative change in
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w′q′v0 is in the range -60% and 40% (see table 4.2 for more details.) The flux of water vapor

will affect the water vapor available for condensation. We hypothesize that an increase in

w′q′t0 will lead to an increase in water vapor, which upon condensation will release heat

and make the air parcel ascend.

Name Description w′q′t0 w′q′t0/w
′q′t0,B w′θ′0 w′θ′0/w′θ′0,B

[ms−1 (kg·kg−1)] [ms−1K]

SF1 Reduced latent heat flux 2.08 10−5 40% 0.01364 170.5 %

SF2 Reduced latent heat flux 4.16 10−5 80% 0.00988 123.5 %

SF3 Increased latent heat flux 6.24 10−5 120% 0.00614 76.6 %

SF4 Increased latent heat flux 7.27 10−5 140% 0.00426 53.3 %

Table 4.2: Description of the simulations included in the set of modified surface fluxes. The
subscripts 0 and B denote surface level and BOMEX, respectively.

4.2.2 Results from modified surface fluxes simulations.

When increasing the surface latent heat flux we expect more condensation and hence and

increase in cloud fraction. The results, shown for both the cloud and cloud core decom-

position in figure 4.9, confirm our assumption. When increasing the surface latent heat

flux, the cloud base is lowered and the maximum cloud fraction is also affected. There

is a difference between the two decompositions; figure 4.9(a) shows that the cloud core is

significantly affected; the maximum is almost halved.

Not only the cloud fraction is affected by an increased w′q′t0; a higher total water content is

found at all levels, in particular in the subcloud layer, see figure 4.10(a). Note that unlike

the previous set of simulations, the initial qt profiles are identical to that of the reference

case; the differences seen after three hours of simulation are attributed to the changed

surface latent heat flux. The differences of in-cloud qt are almost constant throughout the

cloud layer (not shown). The flux of total water content, w′q′t, has a negative vertical gradi-

ent, i.e. ∂qt/∂t > 0 throughout the subcloud and cloud layer. The net effect of turbulence

is thus to wetten the above laying levels; humidity is transported with thermals to the cloud

layer and outside the clouds there is a compensating large-scale subsidence bringing down

dry air. Only for SF1 does the gradient change sign; it is practically zero. As expected,

an increase in w′q′t0 results in more water vapor being condensed, see figure 4.10(c). Not

only is the initial mean buoyancy for all simulations the same; the initial humidity and
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(a) Cloud core decomposition (b) Cloud decomposition

Figure 4.9: The slab-averaged profiles of the cloud fraction. Increases in the surface latent heat
flux results in lower cloud base and thicker clouds. The maximum cloud fraction, found at cloud
base, also increases. Time averaged over the third hour. Line styles according to legend.

temperature profiles are identical as well, so can we expect of the mean buoyancy profiles

after three hours of simulation to coincide? The result is shown in figure 4.11(a) together

its vertical flux. The profiles from the different simulations coincide very well. An increase

in surface latent heat flux yields a larger flux in the cloud layer, i.e. the supply of fuel to

the cloud-engine is larger. This is shown in figure 4.11(b). In the lower part of the cloud

layer, the tendency of θv is negative, i.e. the fuel to the cloud engine is decreasing, see

figure 4.11(b). In the top part of the cloud layer the tendency becomes positive. w′q′t0
clearly influences the buoyancy flux and hence also the TKE, which is shown in figure 4.12,

together with its contributors.

The contributors to the TKE are of the same order and in the sense that an increase

in w′q′t0 leads to increased liquid water content, the TKE for the largest w′q′t0 are as in

the humidity set the largest. Unlike the other set, the TKE does in no simulation remain

constant throughout a part of the cloud.
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(a) qt (b) ql

(c) w′q′t

Figure 4.10: As figure 4.3. Line styles as in 4.9(a). Line styles as in figure 4.9(a) and symbols
according to legends.
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(a) θv (b) w′θ′v

Figure 4.11: (a) The slab-averaged virtual potential temperature profiles for changed surface
fluxes. The profiles coincide very well. In the simulations with an increased w′q′t0 the subcloud
layer is warmer than in the other runs. From the middle of the cloud layer and above, the picture
is opposite. (b) The turbulent flux of virtual potential temperature w′θv. Line styles as in figure
4.9(a).
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(a) u′u′ (b) v′v′

(c) w′w′ (d) TKE

Figure 4.12: Velocity fluctuation variances, (a)-(c) and the TKE (d). Line styles as in figure
4.9(a).
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(a) Cloud decomposition (b) Cloud core decomposition

(c) Cloud decomposition (d) Cloud core decomposition

Figure 4.13: As in figure 4.6. Remarks regarding computation also given in section 4.1.2. All
legends as in (a).
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(a) In-cloud vertical velocity (b) Cloud fraction (c) Cloud mass flux

Figure 4.14: As in figure 4.7. Line styles as in figure 4.9(a).
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(a) Slab-averaged relative humidity (b) RH vs σ

Figure 4.15: As figure 4.8.
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Just as in the previous set of simulations, the drier the atmosphere is the lower the TKE

becomes, which we expect to see in the fractional entrainment and detrainment rates,

shown in figure 4.13. ε and δ of θl are for both cloud and cloud core decomposition plotted

with a vertical offset. The figures show the same results as in the other set of simulations;

a lower latent heat flux at the surface leads to a drier atmosphere which yields a smaller

ε. This reduction is not as large as in the previous set, though; altering the surface fluxes

does not strongly affect ε. The same simulations produce larger detrainment rates.

This set has with respect to the previous set shown that altering the surface fluxes does

not influence the cloud dynamics as much as altering the mean humidity and tempera-

ture. The entrainment and detrainment rates together with the buoyancy should affect

the cloud massflux and cloud vertical velocities, respectively. We have already presented

the cloud fraction, but let us now combine them and look at our main objective, namely

the cloud massflux. The vertical offset seems to make all the wc-profiles coincide and thus

the different profiles of Mc must be attributed mainly to the cloud fraction. Figure 4.14

shows the cloud massflux using the cloud decomposition and we see substantial differences

between the simulations. We can conclude that knowing w∗ is not enough in cloud param-

eterization, the surfaces fluxes can be altered such that w∗ is unchanged and yet the cloud

dynamics clearly differ.

Above we have shown that we by changing surface fluxes can affect σ, which we want to

relate to the relative humidity, which is shown in figure 4.15. As expected, the relative

humidity increases when w′q′t0 is increased; more humidity is supplied from the surface.

Also shown is the scatter plot of RH versus σ. FS1, which has a severely reduced w′q′t0,

has the lowest values of σ vs RH.
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Chapter 5

Analysis

5.1 Probability density functions

We are not only interested in slab-averaged quantities. For instance, the higher in the

atmosphere the fewer cloud points are counted, which is reflected in the cloud fraction.

But what is not reflected are fields, such as the θl- and qt fields, of the individual clouds.

One way to investigate these fields is to look at individual points and to see how many

points are within one specific temperature interval or qt interval, i.e. we will use individual

gridpoints to make probability density functions, PDFs. The results we present are, unless

stated otherwise, based on in-cloud values. This implies that a sampling criteria has been

imposed; we have chosen the cloud decomposition. Since we at this stage are only interested

in fluctuations we have subtracted the slab mean. An example better explains what we are

doing; for an arbitrary quantity ψ, we look at its value in gridpoint (i, j) and subtract the

slab-averaged mean, i.e. we evaluate ψi,j−ψ = ψ′
i,j (remember that a single prime denotes

deviation from the slab mean, see section 3.1.1). The value of the grid point is only used

in the PDF if it contains liquid water. The cloud mean will be denoted by a subscript, e.g.

ψ′
c =

∑
i,j

(
ψi,jIi,j − ψ

)
∑
i,j

Ii,j
, (5.1)

where Ii.j = 1 if the gridpoint contains liquid water and zero otherwise. Based on these

grids we will also calculate cloud variances. A remark on the PDFs: the values of ψ can

span a large range and the number of cloudy points is rather scarce hence choosing too small

intervals will lead to meaningless PDFs. The PDFs will also be meaningless if the intervals

are chosen to be too coarse; to intercompare different PDFs we had to fix the number of
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intervals and we had to compromise on the number of intervals to ensure that they were

neither to coarse nor to fine, which however sometimes leads to non-Gaussian distributions.

Furthermore, the fields are strongly dependent on time so we used the instantaneous fields,

which are written for each 15 minutes, to make the PDFs that we finally time-averaged for

the third hour.

5.1.1 PDF at different heights

In figure 5.1 the PDF of fluctuations for the following in-cloud quantities are shown; θ′l,

θ′v, w
′ and q′t. The PDFs are based on data from the BOMEX simulation; the PDF from

three different heights are shown.

The cloud mean values and variances will support the graphs and are given in table 5.1.

800 m 1000 m 1200 m

Mean [K] -5.75E-01 -8.47E-01 -1.16E+00
θ′l Var [K]2 2.17E-02 4.30E-02 7.65E-02

Mean [K] 7.13E-02 1.44E-02 -9.95E-02
θ′v Var [K]2 4.80E-02 6.71E-02 9.31E-02

Mean [(ms−1)] 7.40E-01 1.01E+00 9.66E-01
w′

Var [(ms−1)]2 4.53E-01 7.74E-01 1.20E+00

Mean [(kg kg−1)] 1.42E-03 1.76E-03 2.21E-03
q′t Var [(kg kg−1)]2 1.23E-07 1.73E-07 2.36E-07

Table 5.1: The mean and variance of in-cloud θ′l, θ
′
v, w

′ and q′t values. These values correspond
to figure 5.1. All data taken from the BOMEX simulation.

For convenience we have only included three heights but calculations at other heights have

been made to confirm the trends:

The in-cloud fluctuations of θv show both positive and negative values. The PDFs are at

higher heights shifted toward lower values and the cloud mean at some point even becomes

negative; this happens at a height of about 1200 meters. The fact that the mean decreases

supports the theory of buoyancy reversal; at some height the cloud parcels on average be-

come negatively buoyant due to evaporative cooling. Figure 5.1(c) shows that the in-cloud

fluctuations of the vertical velocity also attain both positive and negative signs. The vari-

ance of both θ′v and w′ confirm that the PDFs broaden with height. As a consequence of
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(a) θ′l (b) θ′v

(c) w′ (d) q′t

Figure 5.1: Time averaged PDFs of θ′l, θ
′
v, w

′ and q′t using data from BOMEX. The three graphs
show PDFs at three different heights; 800, 1000 and 1200 meters, respectively. The values have
been connected with a line. A Gaussian form is recognized. Line styles according to legends.
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the broadening, a larger fraction of the particles will with increasing height be negatively

buoyant and hence obtain negative vertical velocities. The readers familiar with the LES

model might want to compare the values of w′
c with those shown in figure 4.7(a). However,

in slab-averaged vertical velocity is largely determined by the incloud vertical velocity;

w ∼ w;c but not completely. There is a discrepancy, which we have further explored in

this section.

The PDFs of θ′l and q′t all have the same sign. The negative sign of the former indicates

that the liquid potential temperature is lower than that of the environment. This implies

that either the cloud potential temperature is lower than that of the environment, or ql is

greater in the cloud, or both. Certainly, qt = 0 in the environment, but mean values of θ′

are all negative (not shown). This shows that clouds are colder than their environments.

The PDFs also that they become even colder with height. The variance also increases with

height, i.e. the distribution function becomes wider. q′t, on the other hand, is in the cloud

always positive. The fact that the clouds are colder and have higher qt than the environ-

ment is also expected; lower temperatures and more qt is essential for cloud forming.

Interesting for weather forecasting models is to know the q′t distribution for the whole grid

together with saturation water content qsat and temperature; they determine how likely

cloud formation is. An illustration is shown in figure 5.2; say we at an arbitrary level have

a saturation water content qsat, and a total water content qt, with fluctuations q′t, from

which we make a PDF. Assuming the temperature over the horizontal grid is constant,

above one critical value, qt,crit = qsat, the plume gets saturated and a cloud is formed.

Thus the longer the tail of the PDF the larger the chance of cloud forming is. Figure

5.2(a) illustrates how two different PDFs can yield two different chances of cloud forming.

Neglecting the temperature effects on qsat should be avoided; compared to their environ-

ment clouds have lower temperatures, which in turn brings down qsat. Figure 5.2(b) shows

a real PDF of q′t using the whole grid from BOMEX at 800, 1000 and 1200 meters. The

graphs clearly get narrower with height, i.e. the chance of cloud forming decreases.

5.1.2 PDF of different simulations

We can also look at differences in fluctuations between the different simulations; the same

quantities as in figure 5.1 are used, and are shown in figure 5.3. For the sake of convenience

we only intercompare the following simulations: BOMEX, Hum2, Hum4, SF2 and SF3 at

one height; 1000 meters.

The θ′l fluctuations are related to the humidity of the atmosphere. The graph, supported
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(a) Illustration (b) Real

Figure 5.2: (a) Two arbitrary PDFs of slab-averaged qt. The chance of cloud forming is given
by the probability given to the right of the thin solid line, i.e. the full thick line predicts larger
chances of cloud forming. In (b) a real example of the slab-averaged qt, taken from BOMEX, is
shown. Line styles according to legends.

by table 5.2, shows that the in-cloud mean θ′l,c of the driest simulations are the most

negative with respect to their environments. As expected, the θ′l,c values for all simulations

are negative. Interestingly we also note that the variance for all simulations are larger than

that for BOMEX. Expecting of a dry atmosphere to have only a few energetically rising

plumes (having low θ′l) with many cloud points nearly being environmental points (θ′l close

to that of the environment) would yield a large variance. This is contrary to what we find;

Hum2 and SF2, which are the driest simulations, have smaller variances than Hum4 and

SF4. The trick is to look at the in-cloud mean together with the variance; when subtracting

the standard deviation from θ′l,c we get lower values for the driest simulations.

The PDF of θ′v,c makes it a bit hard to distinguish which case has the lowest θ′v,c. With

aid of table 5.2 we see that there is no straight forward relationship between atmospheric

humidity and θ′v,c. Again we apply the trick of subtracting the standard deviation from

the in-cloud mean. For all simulations that operation gives negative values. With respect

to the other simulations, the θ′v field of Hum2 clearly has more negatively buoyant points

but we cannot draw any further conclusions.
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(a) θ′l (b) θ′v

(c) w′ (d) q′t

Figure 5.3: Same as figure 5.1 except for different simulations. Only one height, 1000 meters, is
shown. Line styles according to legends. Mean values and variances are given in table 5.2.

55



The PDFs of in-cloud vertical velocity fluctuations w′, do not reveal much, neither does

table 5.2. The in-cloud fluctuations of total water content are, as expected, well related

to the initial profiles. Both Hum4 (more humid) and SF3 (larger w′q′t0) have smaller q′t,c
and vice versa for Hum2 and SF2. If the mean initial qt values are increased, a larger q′t,c
would intuitively be expected. However, one should not forget that the slab mean has been

subtracted, i.e. the denominator in equation 5.1 is smaller.

We conclude this section by raising a question concerning the distribution function in

general. For θ′v and w′ we have found that the variances are of the same order as the mean

value itself. The PDF look Gaussian but with a variance of the same order a flat PDF is

expected. The two other variables, θl and qt, are conserved variables and do not produce

variances on the same order as their mean values. The question is thus; can we prescribe

a Gaussian PDF for non-conserved variables?

BOMEX HUM2 HUM4 SF2 SF3

Mean [K] -8.47E-01 -1.10E+00 -7.91E-01 -9.00E-01 -7.91E-01
θ′l Var [K]2 4.30E-02 5.56E-02 6.49E-02 6.33E-02 4.67E-02

Mean [K] 1.44E-02 -9.88E-02 7.17E-02 5.89E-02 9.63E-03
θ′v Var [K]2 6.71E-02 9.67E-02 8.83E-02 9.57E-02 7.95E-02

Mean [(ms−1)] 1.01E+00 9.76E-01 1.06E+00 1.05E+00 9.17E-01
w′
c Var [(ms−1)]2 7.74E-01 9.00E-01 1.04E+00 1.02E+00 8.92E-01

Mean [(kg kg−1)] 1.76E-03 2.31E-03 1.59E-03 1.87E-03 1.70E-03
q′t Var [(kg kg−1)]2 1.71E-07 2.32E-07 2.53E-07 2.50E-07 2.22E-07

Table 5.2: Same as table 5.1 but for different simulations. All values at 1000 meters.

5.2 Virtual potential temperature

We have initialized θv the same in all our simulations and we will now look at the virtual

potential temperature after two hours of simulation time using the same simulations as

in the previous section, i.e. BOMEX, Hum2, Hum4, SF2 and SF3. In figure 4.4(a) and

4.11(a) their θv profiles are shown; it can be seen that the simulations from the humidity

set diverge more. For the four simulations mentioned above we have calculated the virtual

potential temperature for an adiabatically rising parcel, θv,ad. To this end we used the ten
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minutes averaged values of θl, Qt and pressure to computed the adiabatic virtual potential

temperature, which we in turn averaged over the third hour. The results are shown in

figure 5.4. These profiles should be seen in contrast with the slab-averaged profile; as an

example the θv profile from BOMEX has been plotted as well. The figures indicates that

Figure 5.4: The virtual potential temperature for an adiabatically rising parcel. To bring these
profiles into context the slab-averaged virtual potential temperature for BOMEX is plotted as
well. All profiles averaged over the third hour, see text for more information. Line styles according
to legends.

the differences in vertical gradients of θv,ad are vanishingly small. However, the figure also

suggests that CAPE is very sensitive to the cloud base, see also below. But for now we

will turn our attention the effect lateral mixing has on the virtual potential temperature

of a rising parcel.

Buoyancy reversal will become more and more prominent with height. In figure 5.5(a) the

respective θv,c values are subtracted from the slab-averaged virtual potential temperature.

Buoyancy reversal, i.e. θv > θv,c, increases with height. Lastly, to get a better idea on how

prominent the downdraft region of a cloud is, we have plotted the ratio of downdraft to

total cloud points, 5.5(b). The lines coincide very well and we note with interest that the

fraction σdown/σcloud stays approximately constant throughout the whole cloud layer. We

will not elaborate further on this point but have included it since it may be of interest in

cloud parameterization.
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(a) (b)

Figure 5.5: The cloud mean virtual potential temperature minus the slab-averaged value, θv,c−θv,
plotted with a vertical offset, (a). Also shown is the ratio of downdrafts to cloud points scaled
with cloud depth, (b). Line styles as in 5.4.

We now combine CAPE and buoyancy reversal and have a critical view on the buoyancy

flux: according to Grant and Lock (2004) the buoyancy flux can be scaled with a factor√
Mb

w∗
MbA

zcld
, w∗ = (MbA)1/3 , (5.2)

whereMb is the massflux at the cloud base, w∗ is the velocity scale for turbulent fluctuations

(Grant and Lock, 2004), and zcld the cloud depth. In our simulations the cloud depth, zcld,

was approximately constant and by choosing the initial θv to be the same we have aimed at

keeping CAPE, A, the same too. This implies that the proposed scaling is determined by

the cloud massflux at the cloud base, Mb. The relevance of the buoyancy flux is that it is

proportional to the virtual potential temperature flux, which is important in determining

how tall clouds grow. In the cloud layer this flux is also the main production term of

TKE, which is important for turbulent transport. This makes scaling the buoyancy flux

so desirable.
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In figure 5.6 we show the unscaled and scaled buoyancy flux. Note that we so far have

referred to w′θ′v as the buoyancy. Strictly speaking this is the virtual potential temperature

flux, which is the buoyancy flux times g/θ0; the buoyancy flux being denoted w′b′. The

scaling profiles are time averaged buoyancy flux profiles divided by time averaged scaling

factors; first we calculate the scaling factors using the ten minutes averaged values and

subsequently time average them for the third hour. On inspection of figures 5.6(a) and

(a) Unscaled (b) Scaled

Figure 5.6: The buoyancy flux unscaled (a) and scaled (b) according to Grant and Lock (2004).
Line styles as in figure 5.4.

5.6(b) we see that the unscaled buoyancy flux profiles do not diverge more than when the

scaling has been applied. Figure 5.6(a) shows that the buoyancy flux can differ as much

as by a factor of 2 between Hum2 and Hum4 whereas figure 4.7(c) shows that at the cloud

base the mass flux for these two experiments is approximately the same. Furthermore,

the profiles do not even have the same form, which indicates that it is not possible make

the profiles coincide simply by multiply them with some constant. With our results the

scaling proposed by Grant and Lock (2004) does not work and the responsible factors are

the cloud fraction and difference in virtual potential temperature between environment
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and cloud parcel.

In figure 5.6(b) the scaled buoyancy flux profiles for BOMEX, SF2 and SF3 lie closer than

the unscaled profiles. We believe that the explanation lies in the cloud fraction; in section

4.2.2 we saw that the cloud fraction of these three profiles are very much similar. But that

is not the case for the two humidity simulations, e.g. figure 4.2(b). Thus the cloud fraction

is an important, yet not the sole factor in the buoyancy flux. Assume that the tophat

approach, w′θ′v = Mc(θv,c − θv), works. This formula shows that the difference between

cloudy and environmental virtual potential is also important.

5.3 Remarks on CAPE

The in-cloud vertical velocity is directly related to the massflux. We therefore desire to

scale the in-cloud vertical velocity. CAPE is a good candidate, but does it provide a good

scaling and should we really try to estimate the maximum in-cloud vertical velocity by

looking at an adiabatically rising parcel? Let us start with the last part of that question;

in equation (2.4) the integrant θv,c−θv, together with the vertical distance to be integrated

over, LOC-LCL, determines the CAPE. If the parcel is rising adiabatically the CAPE is

given by the striped area of figure 2.3. We will call this the adiabatic CAPE. If we on

the other hand use the actual θv,c as obtained through sampling, CAPE will differ. We

have also computed this CAPE in the domain where the cloud is positively buoyant with

respect to the environment; hereafter called the ’true CAPE’. In figure 5.7 the θv profile

of an adiabatically ricing parcel, θv,ad, is plotted together with θv, θv,core and θv,cloud. The

latter two are the cloud-averaged virtual potential temperature under the cloud core and

cloud decomposition, respectively. Data from experiments Hum2 and Hum4 have been

plotted and only from the cloud base to a height of 1500 meters. The area between the

profiles of θv,ad and θv represents the same as the striped area in figure 2.3 and clearly dif-

fers substantially from the area between the θv,core profile and the environment. In figure

5.7(a), θv,cloud exceeds θv only in a small fraction of the cloud and produces a CAPE much

less than that of the adiabatically rising parcel.

Another critical remark about the adiabatically computed CAPE is that under discretiza-

tion the location of the cloud base can to some degree alter the CAPE. For instance, assume

the θv,ad profile is pitched down one level ∆z and the gradient is unchanged. This will hap-

pen if even only a single thermal gets saturated at a lower height. Figure 5.4 already

indicated what would happen if the cloud base was lowered and figure 5.8 schematically

highlights the problem: the extra CAPE is approximately proportional to the area of a
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(a) Hum2 (b) Hum4

Figure 5.7: The virtual potential temperature of an adiabatically rising parcel, cloud decomposi-
tion, cloud core decomposition and the environment, time-averaged over the third hour. Profiles
are from experiments Hum2 (a) and Hum4 (b) (for more details see table 4.1) and only from
around the cloud base to the inversion. Line styles according to legends.

parallelogram, which is ∼ ∆z[θv(LOC) − θv(LCL)], i.e. the difference in CAPE will ap-

proximately be ∆z(θv(LOC)−θv(LCL)g/θ0, which is of the order of 10-20m2s−2. Without

lowering the cloud base, estimates for CAPE are of the order 30-40m2s−2. In table 5.3

more estimates on CAPE of an adiabatically rising parcel is given together with the true

CAPE using the cloud core and cloud decompositions. With these numbers for adiabatic

CAPE we see that lowering the cloud base strongly influences the outcome. The figures

for the true CAPE using the cloud decomposition are low, which is related to the fact

that the cloud as a whole is only over a small depth positively buoyant with respect to

the environment. Instead the CAPE as obtained by the cloud core decomposition should

intuitively be used; the core dictates how tall a cloud can grow. The table also indicates

how reliable the adiabatic CAPE is as indicator for the vertical velocity; both the vertical

velocity as computed by equation (2.5) and the maximum velocity up from the LES model
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z

Virtual potential temperature
Figure 5.8: The light shaded area is the adiabatic CAPE. Lowering the cloud base yields extra
CAPE, here shown as a dark shaded parallelogram.

BOMEX Hum1 Hum2 Hum3 Hum4 SF1 SF2 SF3 SF4

Core [m2s−2] 11.0 9.6 9.9 12.8 13.1 4.9 9.2 10.5 14.1

Cloud [m2s−2] 0.9 0.4 0.1 2.0 1.4 0.01 0.6 1.1 1.6

Adiabatic [m2s−2] 27.4 23.4 20.8 36.5 44.7 18.5 23.9 32.1 34.9

maxwcore [ms−1] 3.5 3.1 3.1 3.1 2.7 2.2 3.1 3.3 3.3

wCAPE,ad [ms−1] 7.4 6.8 6.5 8.5 9.5 8.0 8.4 6.9 6.1

wCAPE,core [ms−1] 4.7 4.4 4.4 5.1 5.1 6.1 6.9 8.0 8.4

Table 5.3: CAPE as computed by (2.4) using θv,c = θv,core or θv,c = θv,cloud and CAPE for
an adiabatically rising parcel. All CAPE values have been calculated using instantaneous values
and at the end averaged. The true CAPE, both decompositions, for experiment Hum4, which
rises higher than Hum3, is too low; the error is attributed to the averaging process. Also shown
are the numbers for the maximum velocity using equation (2.5) for the adiabatic and true (core)
CAPE and from the LES output.

are given. These maximums are from the cloud base to the inversion; the same range over

which the adiabatic CAPE is computed. When using the adiabatic CAPE the vertical

velocity is overestimated drastically. When instead using the true CAPE under the core
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decomposition the estimate for the maximum cloud vertical velocity becomes better, yet

not satisfactory.

To assess how well the vertical velocity scales with CAPE, we have scaled the cloud and

cloud core vertical velocity with the adiabatic CAPE. The core velocity is also scaled with

the true CAPE. The results are shown with an offset in figure 5.9. We have not tried to

scale the cloud velocity with the true CAPE since only a fraction of the cloud is positively

buoyant. The figure shows that the vertical offset efficiently enough make the wc profiles

coincide; scaling seems to be redundant.
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(a) wcore (b) wcore/
√

2CAPEad

(c) wcore/
√

2CAPEtrue

Figure 5.9: The cloud core vertical velocity unscaled (a), scaled with adiabatic CAPE (b) and
scaled with true CAPE (c). All plots are with an vertical offset. Line styles as in figure 5.4.

64



Chapter 6

Conclusions and recommendations

6.1 Conclusions

Shallow cumulus clouds are important in the energy supply to the Hadley circulation and

must therefore be included in climate models. They are furthermore too small to directly

put into weather prediction models, parameterization is needed.

Derbyshire et al. (2004) have looked at the effect atmospheric humidity has on deep convec-

tion. Our question is to what degree atmospheric relative humidity influences the buoyancy

of a parcel, the lateral entrainment and detrainment rates, and the cloud massflux while

keeping the initial buoyancy profiles identical. In general circulation models properties of

cumulus clouds are calculated by using the massflux approach. The massflux is determined

by the in-cloud vertical velocity and the cloud fraction, the latter being a function of the

atmospheric relative humidity. When trying out some hypothesis we noticed that special

attention had to be paid to CAPE as well.

In our research we have carried out some sensitivity simulations with the BOMEX as a

reference case; we initiated our simulations such that the initial mean buoyancy profiles

were the same as for BOMEX. The latter has been widely studied, e.g. Siebesma and Cui-

jpers (1995). The sensitivity simulations are split into two sets: In the first set the initial

mean total water content profiles were altered together with the temperature profiles in

such a way that the virtual potential temperature remained unchanged. In the second set

we altered the surface latent heat and sensible heat flux in such a way that the virtual

potential temperature flux at the surface remained unchanged.

The results show that the buoyancy does not solely determine the cloud dynamics; the

virtual potential temperatures between different simulations remained small, yet the dy-

namics differed significantly. When the initial profiles were made drier, the θv,c− θv excess

65



of a cloud soon became negative; cloudy parcels became negatively buoyant with respect

to the environment. The same was found when the total water content supply from the

surface, w′q′t0, was reduced. The explanation is as follows; say that a cloudy parcel mixes

with a very dry atmosphere. The mixture will then easier become unsaturated, i.e. the

liquid water evaporates whereby energy is consumed and the cloud parcel becomes colder.

In standard literature (e.g. Holton, 1992) the convective available potential energy is used

to estimate the vertical velocity. Buoyancy does not solely determine the vertical velocity,

however; turbulence will reduce the transformation from potential energy to cloud upward

velocity. The turbulent kinetic energy is affected by atmospheric humidity in the way that

the TKE is reduced when the atmosphere is made drier. Turbulence is also responsible

for lateral mixing, which consequently is affected by the atmospheric humidity as well;

the drier the atmosphere gets the smaller the fractional entrainment rate becomes. Lat-

eral mixing explains why calculating CAPE using an adiabatically rising parcel should be

avoided. We have found that not only does the adiabatic CAPE grossly overestimate the

cloud vertical velocity, small changes in atmospheric total water content and temperature

profiles can change the height of the cloud base and in that way change the adiabatic

CAPE by ∼25%. The cloud massflux is determined by the cloud vertical velocity and the

cloud fraction, the latter being the most important factor. Readily we would expect of the

cloud fraction to reduce when the atmosphere is made drier. The results confirm our ex-

pectation. Consequently the massflux is strongly dependent on the atmospheric humidity.

Interesting for parameterization we have briefly introduced the fraction of downward mov-

ing cloud parcels versus the total number of cloud parcels. This ratio is given in figure

5.5(b). Another interesting issue that may be incorporated in parameterizations is the

relation RH versus σ. In figure 6.1 a scatter plot combining figures 4.8(b) and 4.15(b)

show how these two quantities are related

6.2 Recommendations

Buoyancy is the cloud’s engine and the buoyancy flux is the fuel supply to that engine.

It is therefore desirable to parameterize this flux in large scale models. Grant and Lock

(2004) tried to do so using CAPE as one factor. According to our results the cloud

dynamics, including CAPE, are affected by the atmospheric humidity. The buoyancy flux

also depends on the cloud fraction, which is not incorporated in the scaling proposed by

Grant and Lock. We still do not understand why the scaling works well for the simulations

that they carried out.; the atmospheric relative humidity should be incorporated in the

66



Figure 6.1: Scatter plot of RH versus σ for all simulations.

scaling.

In all our experiments we have used BOMEX as the reference state. The mean virtual

potential temperature profile is such that the BOMEX case evolves to a steady state

(Siebesma and Cuijpers, 1995), and we have found that with time our experiments migrate

toward the BOMEX case. It would therefore be interesting to do the same research for

some other virtual potential temperature profiles, not necessarily evolving to a steady state.
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Appendix A

Thermodynamics

This appendix aims at introducing the thermodynamical equations as well as defining the

variables used in investigation of cumulus convection. We will introduce the liquid wa-

ter potential temperature and virtual potential temperature, θl and θv respectively, both

important when describing a rising thermal. Specific humidities like total water content,

qt, and water vapor content, qv are essential. The potential temperatures and specific hu-

midities are important quantities in describing phase change, which inevitably drives the

cumulus convection.

Before discussing the thermodynamical laws we first have to introduce the meaning of an

intensive variable, an extensive variable and a specific variable: An intensive variable is

one whose value does not depend on the amount of matter in the system. An extensive

variable, on the other hand, depends on the size of the system. To obtain an intensive

variable from an extensive one, simply divide the extensive variable by the mass. A specific

variable is the same as an intensive variable; both terminologies will be used.

A system is a finite amount of material separated from its environment. Sometimes the sys-

tem is simply an air particle. A system is described by a set of thermodynamical coordinates.

Temperature, volume and pressure are examples of such thermodynamical coordinates.

A.1 A dry approach, the equation of state

The state diagram introduced above is constructed by the equation of state. If the state

can be described by the thermodynamical coordinates x1, x2, · · · , xn then the equation of

state, f , reads

f(x1, x2, · · · , xn) = 0 .
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Its differential is then given by

df =
( ∂f
∂x1

)
x2,x3··· ,xn

dx1 +
( ∂f
∂x2

)
x1,x3··· ,xn

dx2 + · · ·+
( ∂f

∂xn

)
x1,x2,x3··· ,xn−1

dxn .

The subscripts indicate that those variables are kept constant under differentiation.

The atmosphere consists of nitrogene (75.5%), oxygene (23.2%), some carbondioxide (<1%)

and other constituents like water vapor. This mixture resembles an ideal gas, which obeys

the ideal gas law :

pV = νR∗T .

Reading from left to right, the variables are pressure, (extensive) volume, number of moles

of gas, R∗ = 8.341 J mol−1K−1 the universal gas constant and temperature, respectively.

On intensive form, the gas law for dry air, i.e. no moisture, reads

p = ρRdT . (A.1)

Here Rd = 287.05 J kg−1K−1 is the gas constant for dry air. The ideal gas law is an

example of the equation of state. A more detailed discussion on the gas constant is found

in Bohren and Albrecht (1998).

A.2 The first law of thermodynamics, heat capacity

and enthalpy

The first law of thermodynamics relates the internal energy of a medium to the heat added

and work performed by the medium. Using intensive variables where u and q denote

internal energy and heat, respectively, the first law reads on differential form:

du = dq − pdv . (A.2)

The last term on the right hand side denotes the work performed by the system on its

environment. If we let the internal energy be a function of temperature and volume, i.e.

u = u(v, T ), then we can express the differential of u as

du =
(∂u
∂v

)
T
dv +

( ∂u
∂T

)
v
dT .

It can be shown that an ideal gas does not depend on its volume, i.e. ∂u/∂v = 0 (e.g.

Bohren and Albrecht, 1998), hence a comparison of the latter equation with equation (A.2)

reveals that

dq =
( ∂u
∂T

)
v
dT + pdv .
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The first term on the right hand side defines the specific heat capacity at constant volume

cv ≡
( ∂u
∂T

)
v

. (A.3)

This quantity specifies how much energy must be added to warm up one kilogram of air

by one Kelvin when the system is kept at constant volume. A process in which the volume

is constant is called an isometric process.

In a similar way, we introduce the specific heat capacity for an isobar process, i.e. dp = 0.

In order to do so, we introduce the enthalpy, h, which is defined as

h = u+ pv . (A.4)

Using this definition, the first law of thermodynamics can be written

du = dq − d(pv) + vdp⇒ d(u+ pv) = dq + vdp⇒ dh = dq + vdp . (A.5)

With the enthalpy the specific heat capacity of an isobaric process is defined as

cp ≡
( ∂h
∂T

)
p

. (A.6)

It can furthermore be shown that the two specific heat capacities for dry air are related

through

cp = cv +Rd .

Holton (1992) gives a physical interpretation of the enthalpy.

A.3 Entropy, the second law of thermodynamics and

potential temperature

We have now come to the introduction of a crucial quantity called entropy, which is defined

as

ds = dq/T . (A.7)

Let a system go from one state to another. The change of entropy depends on the initial and

final state only, i.e. how the system got from the initial to the final state is unimportant.

Thus we do not speak about entropy in one state or another, rather about changes in

entropy. If the change in entropy after a process is zero, the process is said to be isentropic,

i.e. ds = 0. An adiabatic process is one in which the system does not exchange heat with
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its surroundings, i.e. dq = 0. It can be shown that the change in entropy can only be

positive or zero, i.e. ∆s ≥ 0. This is what makes entropy useful; if a process results in

a negative entropy change, then the process cannot take place. Equivalently, the process

would violate the second law of thermodynamics.

Loosely speaking, the second law of thermodynamics states that energy cannot go from a

low quality state to a high quality state by itself. In mathematical terms, this law can be

derived by using the first law of thermodynamics and the entropy

du = dq − pdv ⇒ du = Tds− pdv .

Finally, we incorporate the ’legality’ of the process, i.e. the change of entropy cannot be

negative

Tds = du+ pdv ≥ 0 . (A.8)

We start the introduction of the potential temperature with a short physical description.

Picture a particle with temperature T at an arbitrary height. The potential temperature,

θ, of the particle is the temperature the particle would have if we adiabatically (i.e. without

heat exchange with the environment) displaced it downward to the surface. The pressure

near the surface is denoted by reference pressure, p0, often ascribed the value 1000 hPa.

Our starting point for deriving a mathematical expression for the potential temperature

is the first law of thermodynamics (A.5). Since we assume no heat exchange with the

surroundings, we have dq = 0. Furthermore we will use dh = (∂h/∂T )pdT ≡ cpdT and

divide equation (A.5) by T and utilize equation (A.1) to obtain

cp
T

dT =
Rd

p
dp⇒ d lnT =

Rd

cp
d ln p .

In the state diagram we integrate from state (T0, p0) to (T, p)

T

T0

=
( p

p0

)Rd/cp
⇒ Tp−Rd/cp = T0p

−Rd/cp
0 .

But remember that the potential temperature was the temperature the particle would have

at the reference pressure p0, i.e. θ = T0. We thus end with

θ = T
(p0

p

)Rd/cp
. (A.9)

A.4 Moist variables

So far we have introduced the variables necessary to describe a dry atmosphere. An

essential part of the description of cumulus convection is the presence of moisture, which
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inevitably leads to phase transformation.

The water vapor pressure, usually denoted by e, follows from the gas law

e = ρvRvT (A.10)

Here ρv and Rv are the density of water vapor and the humid gas constant, respectively. If

the atmosphere cannot absorb more water vapor without forcing a condensation, it is said

to be saturated. Its water vapor pressure is then es. The relative humidity RH = e/es

gives a measure of the actual vapor pressure to the saturated vapor pressure.

If we consider a control volume consisting of water (in any phase) and dry air, we define

the ratio of water to dry air as the mass mixing ratio. On the other hand, the ratio of

water to the total mass is called the specific humidity. Their mathematical expressions are

given by

rk =
mk

md

, qk =
mk

m
, m = mv +ml +mi +md . (A.11)

where k ∈ {v(vapor), l(liquid), i(ice)} and md is the of a dry air parcel.

A.5 The Clausius-Clapeyron equation

Water molecules are constantly coursing back and forth between phases; we will only

consider the vapor and liquid phases. The rate at which water vapor molecules transfer

to liquid water molecules is called the condensation rate. Similarly, the evaporation rate

is the rate at which liquid water is transformed to water vapor. As air raises, it becomes

colder due to adiabatic expansion and the evaporation rate decreases more rapidly than

does the condensation rate, hence there is a net condensation.

Figure A.1 depicts a two dimensional phase diagram showing water in different phases.

Figure A.1: State diagram for an ideal gas. Taken from Both and Christiansen (1995).

Let us look at a mixture of liquid water and water vapor confined within a cylinder fitted
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with a piston which controls the volume of the cylinder; there is no heat exchange with

the environment. Figure A.2 shows the phase transformation under an isotherm, four-

step process. From 1 to 2 the pressure increases as the volume decreases. At point 2 the

Figure A.2: pv-diagram showing border lines between different phases. S = solid, WV = water
vapor, L = liquid and G = gas. Taken from Both and Christiansen (1995)

pressure equals the saturation pressure es. The next step, from 2 to 3, there is no change

in pressure, rather the decrease in volume enforces a condensation of water vapor to liquid

water. In between 2 and 3 both liquid water and saturated vapor is present. Finally arrived

at point 3, all water vapor has become liquified. A subsequent volume decrease will result

in a pressure increase, step 3 to 4.

The relationship between the temperature of a liquid and its vapor pressure is not a straight

line. The vapor pressure of water, for example, increases significantly more rapidly than

the temperature of the system. The rate of change of saturated water vapor pressure with

respect to temperature (i.e. des/dT ) determines the coefficient of the border line between

vapor and liquid in the phase diagram. A simple way of deriving the Clausius-Clapeyron

equation, which relates the pressure change to latent heat released upon condensation, is

to start with the Maxwell relations. Following Both and Christiansen (1995), we start by

introducing Helmholtz’ free energy

f = u− Ts .
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With aid of equation (A.7) and the definition for the enthalpy (A.4), equation (A.5) can

be written as

d(u+ pv) = Tds+ vdp

which after applying the chain rule of differentiation and rearranging reads

df = d(u− Ts) = −sdT − pdv . (A.12)

Compare this expression with the differential of df to obtain

df =
( ∂f
∂T

)
v
dT +

(∂f
∂v

)
T
dv

hence
( ∂f
∂T

)
v
dT = −s and

(∂f
∂v

)
T
dv = −p (A.13)

Cross-differentiate equation (A.13) and obtain(∂s
∂v

)
T

=
( ∂p
∂T

)
v

. (A.14)

The latter equality constitutes one of four Maxwell relations. We can replace the pressure p

by the saturated water vapor pressure es and since es and the temperature are independent

of the volume during phase transition, we have (∂es/∂T )v = des/dT . If we choose the

volume and temperature as free coordinates for the entropy, we can write

ds =
( ∂s
∂T

)
v
dT +

(∂s
∂v

)
T
dv .

But the process was assumed isotherm, thus the first term on the right hand side drops

out. Hence (∂s/∂v)T = ds/dv. Combining the latter equation with (A.14) we get

ds

dv
=

des
dT

=
dq/T

dv
.

Now use finite differences

des
dT

=
dq

T (vv − vl)
=

`v
T (vv − vl)

, (A.15)

where vv and vl are the specific volumes of the water vapor and liquid water, respectively.

The finite heat dq is the heat released when vapor condenses, i.e. dq = `v where `v =

2.5× 106J/kg is the latent heat of evaporation. The volume of water vapor is much larger

than that of liquid water, i.e. vv � vl. In the reminder of the text, we will therefore

incorporate that approximation in the Clausius-Clapeyron equation:

des
dT

=
`v
Tvv

. (A.16)
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This is the heat released when water vapor is condensed. It can be shown that the latent

heat is related to the enthalpy through

`v = hv − hl . (A.17)

Finally we will introduce an alternative expression for the Clausius-Clapeyron equation by

dividing (A.16) by es and using equation (A.1)

d ln es
dT

=
`v

RdT 2
. (A.18)

A.6 ’Wet’ temperatures

An important law used to describing the pressure of a mixture of vapor, water and air is

Dalton’s law. Formally, it states that if a system consist of i constituents having partial

pressures pi, then the the total pressure of the system is p =
∑

i pi. We will use this law to

state that the pressure of air containing dry air and vapor (we neglect the effect of liquid

water on the total pressure) is

p = pd + e = ρRmT = ρdRdT + ρvRvT . (A.19)

By using the specific humidity introduced above, we can express the ratio of the density

of dry air to the total density as

ρd
ρ

=
md

md +mv +ml

= 1− qv − ql .

By aid of this equation, the gas constant for the mixture Rm can be expressed as

Rm = (1− qv − ql)Rd + qvRv ,

and hence the gas law can be written

p = ρ[(1− qv − ql)Rd + qvRv]T = ρRdTv ,

which defines the virtual temperature

Tv =
[
1− (1− 1

ε
)qv − ql

]
T . (A.20)

Here ε = Rd/Rv ≈ 0.622. Similar to the potential temperature defined above, we have a

virtual potential temperature, given by

θv = Tv

(p0

p

)Rd/cp
. (A.21)
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The change in entropy for a parcel undergoing phase transformation is the sum of entropy

change due to external processes and due to phase changes. This can be written

ds =
1

m

∑
i

(midsi + sidmi) . (A.22)

In deriving the potential temperature, we used the following equation, assuming an isen-

tropic process

ds = cpd lnT −Rd ln p .

Note that we have not specified whether we are looking at dry or moist air or liquid water.

The first term on the right hand side can for the three phases be written

[cpd
md

m
+ cpv

mv

m
+ cpl

ml

m
]d lnT = [cpd(1− qt) + cpvqv + cplql]d lnT .

The second term, however, only applies to dry and moist air since liquid water does not

obey the ideal gas law, i.e. after omitting non-physical terms the right hand side reads

(1− qt)Rdd ln pd + qvRvd ln e .

During condensation the energy (heat) release is the latent heat of evaporation times the

mass in question, i.e. dq = −`vdqv where the sign indicates that the parcel gains energy

since the change in water vapor is negative, dqv < 0. Thus for the entropy contribution

coming from the phase change is ds = −`vdqv/T , which we use in (A.22). Then the total

change in entropy becomes

ds = [cpd(1− qt) + cpvqv + cplql]d lnT

−
[
(1− qt)Rdd ln pd + qvRvd ln e− `v

T
dqv

]
.

(A.23)

If we use the Clausius-Clapeyron equation (A.18) and

d`v
dT

=
d

dT
(hv − hl) = cpv − cpl

and introduce the following short-hand notation

c̃p = cpd(1 + qt(cpl/cpd − 1)) and R̃d = (1− qt)Rd ,

we get for (A.22)

ds = c̃pd lnT − R̃dd ln pd + d(
`vqv
T

)− qvRvd ln (e/es) . (A.24)
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If we integrate this equation from a reference state (p = 0, qv = 0, ql = qt) we obtain the

wet equivalent potential temperature

θq = T
( p
p0

)−R̃d/c̃pdeL1qv/(T c̃p)

L1 = `v −RvT ln
e

es
.

For a dry parcel the wet equivalent potential temperature reduces to the potential tem-

perature. This potential temperature can be interpreted as the temperature an air parcel

would have if isentropically transformed to a parcel having reference pressure and zero

water vapor. θq is constant during isentropic transformation even when it involves phase

changes, except when droplets enter or leave the parcel.

The saturated equivalent potential temperature can be further simplified by realizing that

qv, ql and qt are small quantities. They are all of order 10−2, thus R̃d ≈ Rd, c̃pd ≈ cpd and

the exponent is approximated as follows

exp
[L1qv
Tcpd

]
≈ 1 +

L1qv
Tcpd

= 1 +
(`v −RvT ln e

es
)qv

Tcpd

≈ 1 +
`vqv
Tcpd

The resulting equivalent potential temperature then becomes

θe = θ +
`vqv
Πcpd

, Π = θ/T , (A.25)

where Π is called the Exner function. Finally we introduce the liquid potential temperature

θl, which is given by

θl = θ − `vql
Πcpd

. (A.26)

This quantity is used in the LES model. Note that θe ≈ θl + `vqt/(cpdΠ)
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Appendix B

The governing equations

It is now time to use the variables introduced in appendix A in some equations. First we

will look at the equations without imposing any approximations. Thereafter the Boussinesq

approximation is applied and finally we will look at the equations after filtering. Filtering

is the process in which we distinguish between resolved and subgrid scales.

B.1 The unfiltered equations

The momentum equation is given by the Navier-Stokes equations:

dui
dt︸︷︷︸

Acceleration

= − 1

ρ

∂p

∂xi︸ ︷︷ ︸
Pressure gradient

− gδi3︸︷︷︸
Gravity

− 2εijkΩjuk︸ ︷︷ ︸
Coriolis force

+ νM
∂2ui
∂x2

j︸ ︷︷ ︸
Molecular diffusion

(B.1)

The left hand side tells us that the rate of change of velocity, i.e. acceleration, viewed

by an observer following the particle, is given by the terms on the right. This description

is called the Lagrangian description. However, making measurements at one location is

much easier, thus we want a description which allows us to stay foot and not move with

the particle. The Eulerian description is such an approach. The left hand side is the only

one to change:
dui
dt

=
∂ui
∂t︸︷︷︸

Local acceleration

+ uj
∂ui
∂xj︸ ︷︷ ︸

Advection

In absence of other forces, the pressure gradient force ensures that particles are accelerated

from high pressure to low pressure. The earth pulls at each particle, and at the same

time the centrifugal force tries to throw the same particle out into space. The sum of the

latter two forces are combined into the gravitation term, which only works in the direction
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perpendicular to the earth’s surface. Due to the earth’s rotation about its own axis, a

’fictive’ force must be included in order to describe motion in a inertial coordinate system.

Ω = 7.292 · 10−5s−1 is the angular velocity of the earth. The last term on the right hand

side of (B.1) describes dissipation due to molecular interaction between molecules; νM is

the molecular kinematic viscosity coefficient.

The continity equation relates the inflow and outflow into a volume to the time rate of

change of density:
∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ∂uj

∂xj
. (B.2)

The thermodynamic energy equation is given by

∂(cpθ)

∂t
+ uj

∂(cpθ)

∂xj
= νT

∂2(cpθ)

∂x2
j︸ ︷︷ ︸

Molecular diffusion

+

Radiative transfer︷ ︸︸ ︷
1

ρ

∂Rj

∂xj
− `vM︸︷︷︸
Phase change

, (B.3)

νT is the molecular kinematic viscosity coefficient and R the incoming radiation per unit

area. Under phase change energy will be freed / absorbed, e.g. a water droplet needs

to absorb energy in order to condense. In general circulation theory, radiation and phase

change terms are often included in a broader source term, e.g. Holton (1992).

Lastly we will introduce the conservation law for water:

∂qt
∂t

+ uj
∂qt
∂xj

= νq
∂2qt
∂x2

j

+ Sqt . (B.4)

On the right hand side the first term represents molecular diffusivity and the last term

represents sources and sinks such as precipitation.

B.2 Boussinesq approximation

Across the lowest kilometer of the atmosphere the density varies only about 10% and the

fluctuating component of density deviates from the basic state by only a few percent.

However, setting the density constant should be avoided since density fluctuations are

responsible for buoyancy forces. This forms the basis of the Boussinesq approximation;

the density is kept constant in all terms except for the buoyancy term in the vertical

momentum equation. We introduce a mean atmosphere (the whole layer) with density

ρ0 and fluctuations ρ′. Density can be translated to pressure, which in we will write as

p0(z) + p. The mean atmosphere has a corresponding mean virtual potential temperature
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θv,0. The continuity equation for a fluid with constant density becomes

∂ui
∂xi

= 0 . (B.5)

With the approximation
ρ′

ρ0

= −θv − θv,0
θv,0

(see van Dop (2004)) and hydrostatic balance, ∂p0/∂z = −ρ0g, we obtain the following

form of the momentum equation

∂ui
∂t

+
∂(ujui)

∂xj
=
θv − θv,0
θv,0

gδij −
1

ρ0

∂p

∂xi
+ νM

∂2ui
∂x2

j

. (B.6)

On comparison with equation (B.1) we see that the Coriolis force has been omitted. This is

justified since the processes we investigate are rapid processes compared to the revolution

of the earth. Under the Boussinesq approximation the thermodynamic energy equation

(B.3) is linearized to :
∂θ

∂t
+
∂(ujθ)

∂xj
= Sθ , (B.7)

where Sθ is a general source/sink term into which the radiation and the molecular dissipa-

tion terms have been absorbed. With aid of (B.5) and the chain rule of differentiation the

conservation law for total water content reads

∂qt
∂t

+
∂(ujqt)

∂xj
= Sq , (B.8)

where all sink and source terms have been absorbed into the Sq-term.

B.3 Filtered equations

Equations have to be discretized when solved numerically. An xz-surface of a grid is shown

in figure B.1. The notation is getting ugly but there is no way around it: resolved quantities

are denoted by 〈ψ〉 and subgrid terms with a double prime ψ′′ i.e.

ψ︸︷︷︸
True value

= 〈ψ〉︸︷︷︸
Resolved

+ ψ′′︸︷︷︸
Subgrid

.

Filtering the Navier-Stokes equation will be explained in detail. The momentum equation

under the Boussinesq approximation, is in (B.6) put on conservative form, which with the

aid of (e.g. Deardorff, 1973)〈
∂ui
∂t

〉
=
∂〈ui〉
∂t

and

〈
∂ui
∂xj

〉
=
∂〈ui〉
∂xj
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Figure B.1: Example of an equidistant staggered grid as is used in the Dutch LES model.

together with filtering rules

〈〈ui〉〉 = 〈ui〉 and 〈u′′i 〉 = 0 ,

can be rewritten as

∂(〈ui〉+ u′′i )

∂t
+

∂

∂xj

[
(〈ui〉+ u′′i )(〈uj〉+ u′′j )

]
=

− 1

ρ0

∂(〈p〉+ p′′)

∂xi
+

g

θv,0

(
〈θv〉+ θ′′v − θv,0

)
δi3 + νM

∂2(〈ui〉+ u′′i )

∂x2
j

. (B.9)

When this equation is filtered we are left with

∂〈ui〉
∂t

+
∂

∂xj

[
〈ui〉〈uj〉+ 〈u′′i u′′j 〉

]
= − 1

ρ0

∂〈p〉
∂xi

+
g

θv,0

(
〈θv〉 − θv,0

)
δi3 + νm

∂2〈ui〉
∂x2

j

. (B.10)

Now make use of 〈u′′i u′′j 〉 = 〈uiuj〉 − 〈ui〉〈uj〉 and the subgrid stress tensor τij and π being

the modified pressure:

τij = 〈uiuj〉 − 〈ui〉〈uj〉 −
2

3
δij〈e〉

〈e〉 =
1

2

[
〈ukuk〉 − 〈uk〉〈uk〉

]
〈π〉 =

〈p〉
ρ0

+
2

3
δij〈e〉 .

(B.11)
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With these expressions the resolved prognostic momentum equation can be put on the

following form, which in textbooks is the standard notation

∂〈ui〉
∂t

+
∂〈ui〉〈uj〉
∂xj

= −∂〈π〉
∂xi

+
g

θv,0

(
〈θv〉 − θv,0

)
δi3 + νM

∂2〈ui〉
∂x2

j

− ∂τij
∂xj

. (B.12)

Note that on the resolved scale with high Reynolds number, which is the case for the

atmosphere, there is no molecular dissipation. Energy passed on from the large eddies to

smaller eddies is incorporated in the subgrid stress tensor τij. For obtaining an expression

for the subgrid TKE we will return to the first form, however; subtracting (B.10) from

(B.9) yields the tendency equation for the subgrid velocity fluctuation:

∂u′′i
∂t

+
∂

∂xj

[
〈ui〉u′′j + u′′i 〈uj〉+ u′′i u

′′
j − 〈u′′i u′′j 〉

]
= − 1

ρ0

∂p′′

∂xi
+

g

θv,0
θ′′vδi3 + νM

∂2u′′i
∂x2

j

, (B.13)

which we multiply by u′′i and filter:〈
∂(1

2
u′′2i )

∂t

〉
+

〈
u′′i
∂(〈ui〉u′′j )
∂xj︸ ︷︷ ︸
A

〉
+

〈
u′′i
∂(u′′i 〈uj〉)
∂xj︸ ︷︷ ︸
B

〉
+

〈
u′′i
∂(u′′i u

′′
j )

∂xj︸ ︷︷ ︸
C

〉
−

〈
u′′i
∂〈u′′i u′′j 〉
∂xj︸ ︷︷ ︸
D

〉

= −
〈
u′′i
ρ0

∂p′′

∂xi

〉
+

〈
g

θv,0
θ′′vu

′′
i δi3

〉
+

〈
u′′i νM

∂2u′′i
∂x2

j︸ ︷︷ ︸
E

〉
(B.14)

Terms A-E can by aid of the chain rule of differentiation recast on the form

A:

〈
u′′i
∂(〈ui〉u′′j )
∂xj

〉
=

〈
u′′i u

′′
j

∂〈ui〉
∂xj

+ u′′i 〈ui〉
∂u′′j
∂xj

〉
=

〈
u′′i u

′′
j

〉 ∂〈ui〉
∂xj

B:

〈
u′′i
∂(u′′i 〈uj〉)
∂xj

〉
=

〈
u′′2i

∂〈uj〉
∂xj

〉
+

〈
u′′i 〈uj〉

∂u′′i
∂xj

〉
= 〈uj〉

∂〈1
2
u′′2i 〉

∂xj

C:

〈
u′′i
∂(u′′i u

′′
j )

∂xj

〉
=

〈
u′′i u

′′
i

∂u′′j
∂xj

〉
+

〈
u′′i u

′′
j

∂u′′i
∂xj

〉
=

1

2

∂

∂xj
〈u′′i u′′ju′′i 〉

D:

〈
u′′i
∂〈u′′i u′′j 〉
∂xj

〉
= 〈u′′i 〉

∂〈u′′i u′′j 〉
∂xj

= 0

E:

〈
νMu

′′
i

∂2u′′i
∂x2

j

〉
=

〈
νM

∂

∂xj

(
u′′i
∂u′′i
∂xj

)〉
−

〈
νM

(∂u′′i
∂xj

)2
〉

Equation (B.14) can thus be written as

∂〈1
2
u′′2i 〉
∂t

+ 〈uj〉
∂〈1

2
u′′2i 〉

∂xj
= −〈u′′i u′′j 〉

∂〈ui〉
∂xj

−
〈
u′′i
ρ0

∂p′′

∂xi

〉
− 1

2

∂

∂xj
〈u′′i u′′ju′′i 〉

+
gδi3
θv,0

〈θ′′vu′′i 〉+

〈
νM

∂

∂xj

(
u′′i
∂u′′i
∂xj

)〉
−

〈
νM

(∂u′′i
∂xj

)2
〉

. (B.15)
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We now introduce the definition for the subgrid TKE; 〈e〉 = 〈1
2
u′′2i 〉 and rearrange. Fur-

thermore, in order to use the subgrid stress tensor τij we will subtract (2/3)δij〈e〉 in the

shear production term. This is allowed since δij〈e〉∂〈ui〉/∂xj = 〈e〉∂〈uj〉/∂xj = 0. We get

∂〈e〉
∂t︸︷︷︸

Tendency

+ 〈uj〉
∂〈e〉
∂xj︸ ︷︷ ︸

Resolved advection

=
g

θv,0
〈θ′′vu′′i 〉δi3 Production/consumption due to buoyancy

− [〈u′′i u′′j 〉 −
2

3
δij〈e〉]

∂〈ui〉
∂xj

Shear production/consumption

− ∂

∂xj

[1

2
〈u′′i u′′ju′′i 〉

]
Redistribution of subgrid TKE

− 1

ρ0

∂〈p′′u′′i 〉
∂xi

Redistribution of subgrid TKE by pressure fluctuations

+
∂

∂xj

[
νM

〈
u′′i
∂u′′i
∂xj

〉]
− νM

〈(∂u′′i
∂xj

)2
〉

Dissipation .

We have also applied the chain rule of differentiation to the forth term on the right hand

side. The shear production / consumption term can be written (see equation (B.11)) as

−[〈u′′i u′′j 〉 − 2
3
δij〈e〉]∂〈ui〉

∂xj
= −τij ∂〈ui〉

∂xj
. This term is the connection between resolved and

subgrid motion. At the smallest scales, molecular diffusion is responsible for loss of energy.

In the final result we therefore replace the two molecular dissipation terms with a general

dissipation term ε

∂〈e〉
∂t

+ 〈uj〉
∂〈e〉
∂xj

=
g

θv,0
〈θ′′vu′′i 〉δi3 − τij

∂〈ui〉
∂xj

− ∂

∂xj

[1

2
〈u′′i u′′ju′′i 〉

]
− 1

ρ0

∂〈p′′u′′i 〉
∂xi

− ε .

(B.16)

The filtered continuity equation becomes

∂〈ui〉
∂xi

= 0 . (B.17)

Lastly we will turn our attention to the filtered versions of the conservations laws (B.7)

and (B.8). They both involve the same terms and for convenience we will express these

equations with a general variable ψ ∈ {θl, qt}. On filtered form they become

∂〈ψ〉
∂t

+
∂(〈uj〉〈ψ〉)

∂xj
= 〈Sψ〉 . (B.18)
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Appendix C

Decomposition and notation

C.1 Decompositions

In order to plot quantities such as cloud cover, we have to tell the computer which grid

point are cloud points. There are different ways of sampling cloud points; a summary is

given in table C.1. The choice of criteria depends on the matter being investigated; if bulk

vertical transport inside a cloud is under investigation it is reasonable to apply the core

decomposition (ql > 0, w > 0 and θv,c > θv) since the cloud core is responsible for most of

the transport, whereas for radiation issues the presence of cloud droplets is more important

and then the cloud decomposition (ql > 0) is more reasonable

Decomposition Criteria

Updraft w > 0

Cloud ql > 0

Cloud updraft ql > 0 and w > 0

Cloud downdraft ql > 0 and w < 0

Cloud core ql > 0 and w > 0 and θv,c > θv

Table C.1: When sampling, all grid points are tested against these criteria to determine if they
are cloud-, updraft- or core points.

C.2 Symbols
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Short Mathematical notation Description

CAPE A Convective Available Potential Energy

CIN Convective Inhibition

CRM Cloud Resolving Model

DNS Direct Numerical Simulation

GCM General Circulation Model

ITCZ Intertropical Convergence Zone

LCL Lifting condensation level

LES Large Eddy Simulation

LFC Level of free convection

LNB Level of neutral buoyancy

LOC Limit of convection

SCM Single Column Model

TKE Turbulent Kinetic Energy

cp, cv Heat capacity and constant pressure / volume

p Pressure

qt, ql, qv Total and liquid water content, water vapor content

Mc Cloud mass flux

Mb Mass flux at cloud base

Rd, Rv Dry and wet gas constant

RH Relative humidity

~u Velocity vector

θ Potential temperature

θv Virtual potential temperature

θl Liquid potential temperature

ψc In-cloud mean of property ψ

ψenv Environmental mean of property ψ

Table C.2: Notation used in text
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