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Abstract

In this study we have investigated the role of the subgrid model on the LES results of
the stable boundary layer. The LES model was not suited to simulate the SBL, because
the majority of the solutions were determined by the subgrid part of the model. The
subgrid Prandtl number, given by Pr = cm

ch
= φh

φm
was found to have a value of 1

3
, where

field results measure a value around 1. By changing the subgrid Prandtl number from 1

3

to 1 we have made the ratio φm to φh relations to become equal as obtained from field
results. A second change made is the filter constant cf , which determines the cutoff
frequency of the subgrid filter. Changing this value from 2.5 to 2 increases the subgrid
dissipation and decreases the resolved dissipation, and thereby making the subgrid part of
the model becoming less dominant. Sensivity study to surface perturbation has revealed
that the LES model solution is dependend on the geostrophic wind direction (i.e. large
scale pressure gradient). Adding a small perturbation at the surface in the beginning
of the simulation makes the thermals to reach the top of the domain where they lead
to numerical instabilities. Adding the perturbation after a few hours can solve this
problem. We can conclude that temperature heterogeneities at the surface increase the
overall turbulence.
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Chapter 1

Introduction

A large part of weather forecast model is dominated by the evolution of the atmosphere
during the night. As we all know, the sun plays an important role in the dynamics of
the atmosphere. Just before sunset, when the intensity of the incoming solar radiation
decreases, the earth’s surface starts to cool down as more radiation is emitted from the
surface than is absorbed from the atmosphere. This process is know as radiative cooling
and leads to a stable atmosphere with less vertical motion compared to the atmosphere
during daytime. This atmospheric layer close to the ground is know as the stable (noc-
turnal) boundary layer and is still a problem to simulate. But the interest of simulating
the stable boundary layer goes further then only the changes in the atmosphere during
the night. Global climate models used to predict the climate on Earth are struggling
with problems such as artic nights where the stable boundary layer remains for months.
Improving the model for simulating the stable boundary layer would help improve the
global climate models and make climate forecasts more accurate. This study will focus
on the improvement of the Dutch Large-Eddy Simulation (DALES) and test the model
sensitivity to surface temperature heterogeneities. Our objective is to match simulation
data with field results.
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Chapter 2

Analysis of the Large eddy

Simulation model

In this chapter, the parts of the Large eddy Simulation (LES) model needed for this
research will be discussed. For a full description of the LES, we can refer to the PhD thesis
of Magreet van Zanten11. A LES model calculates the the evolution of the atmosphere
in all three spatial dimensions. The main equation used is the Navier-Stokes equation,
which gives a full description of the movement of liquid and gases. If we would be able to
solve this equation analytically, we would be able to predict exactly the evolution of the
atmosphere boundary layer (ABL). But unfortunately this equation remains unresolved
even today. We can solve the Navier-Stokes equation numerically. In order to obtain this
solution numerically, because of the nature of the Navier-Stokes equation, the Navier-
Stokes equation needs to be solved on all scales, from the Kolmogorov micro scale (∼
1mm) to the scale of the largest eddies present in the ABL (∼ 1km). Using a grid able to
calculate the effect of all those scales would require a huge amount of computer power.
The LES bypasses this problem by dividing the solution in two parts. The first part is the
solution what has been explicitly calculated using the Navier-Stokes equation, restricted
to the grid resolution. The second part is the subgrid part, which has been implemented
to calculate the fluxes on a scale smaller then the grid. A good subgrid model should
only have a small contribution to the total solution of the LES, and in ideal case should
not influence him. The notation of van Zanten11 will be used.

x̃ = 〈x〉 + x′′ (2.1)

with < x > the resolved part and x′′ the subgrid part. Although the governing
equations are solved in each grid point, the output data of the LES model is horizontally
(i.e. slab) averaged and will be denoted by using an overbar:

〈x〉 = 〈x〉 + 〈x〉′ (2.2)

Each part of the model will be discussed in more details in the next sections.
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CHAPTER 2. ANALYSIS OF THE LARGE EDDY SIMULATION MODEL

2.1 LES governing equations

As mentioned before, the resolved part of the solution is calculated using the Navier-
Stokes equation:

∂〈ui〉

∂t
+

∂〈uj〉〈ui〉

∂xj
= −

∂〈π〉

∂xi
+ g

〈Θv〉

Θ0

δi3 −
∂τij

∂xj
− δi1f (ui − ugi) + δi2f (ui − ugi) (2.3)

with δij the Kronecker delta. θ0 is the reference temperature and τij the subgrid stress
tensor is given by τij = 〈ũjũi〉 − 〈uj〉〈ui〉 − 2/3δij〈e〉 with 〈e〉 the subgrid TKE. τij is a

consequence of filtering. The modified pressure π is defined as π = 〈p〉
ρ0

+ 2/3〈e〉. f is the
Coriolis parameter and ugi the geostrophic wind velocities in the u and v directions given
by

fvg = ρ−1
∂p

∂x
(2.4)

fug = −ρ−1
∂p

∂y
(2.5)

Another equation present in the resolved part is the filtered continuity equation:

∂ 〈ui〉

∂xi
= 0 (2.6)

This equation assumes the incompressibility of air. A third equation present in the model
is filtered conservation equation of thermal energy:

∂Θl

∂t
+

∂〈ui〉〈Θl〉

∂xi

=
∂〈u′′

i Θ
′′
l 〉

∂xi

−
1

ρ0cp

∂F

∂z
(2.7)

where Θl is the liquid potential temperature and in absence of humidity is equal to the
potential temperature. For more details we refer to van Zanten11.

2.2 Subgrid scale parameterization

The subgrid fluxes of the conserved variables on a scale smaller than the grid resolution
are parameterized. The use of the subgrid scale model is necessary to represent transport
due to unresolved scales. But as it is only a approximation of the terms of the fluxes,
only if the ratio of the SGS fluxes to the total fluxes is small, the LES can provide useful
information. The subgrid fluxes are modeled as the product of a constant and a gradient.
This closure is called the subgrid TKE closure and will be used in our model. Let us take
a look at the main equation of this closure, where e is represents the subgrid TKE:

∂ 〈e〉

∂t
+ 〈uj〉

∂ 〈e〉

∂xj

=
g

θo

〈w′′θ′′v〉 −
〈

u′′
i u

′′
j

〉 ∂ 〈ui〉

∂xj

−
∂

〈

u′′
je

〉

∂xj

−
1

ρ0

∂
〈

u′′
jp

′′
〉

∂xj

− ǫ (2.8)

where p is the pressure and where the first part on the right hand side is the produc-
tion/destruction of the buoyancy and the second is the production/destruction of the
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CHAPTER 2. ANALYSIS OF THE LARGE EDDY SIMULATION MODEL

wind shear. The third and fourth term are the transport terms. The fifth term is the
subgrid viscous dissipation given by:

ǫ =
cǫ 〈e〉

3/2

λ
(2.9)

with λ the typical length of the subgrid eddies and where cǫ is given by

cǫ =
2π

cf

(3

2
α
)−3/2

(2.10)

where cf is a constant which determines the filter wavelength λf which is defined
as cfλ. cf determines the cutoff wavelength of the subgrid filter. In order to solve the
TKE subgrid equation (2.8), the subgrid fluxes are approximated as a product of an
eddy viscosity Km or eddy diffusivity Kh and the local gradient of the resolved variable.
According to van Zanten11 Km and Kh, the subgrid parameters for the momentum and
the heat transfer, are dependend on λ and on the square root of the subgrid TKE and
can be written as follow:

Km = cmλ 〈e〉1/2 with cm =
cf

2π

(3

2
α
)−3/2

(2.11)

Kh = chλ 〈e〉1/2 with ch =
cf

2π

(3

4
β
)−1(3

2
α
)−1/2

(2.12)

cf is take equal to 2.511. The ratio of the eddy viscosity and the eddy diffusivity is given
by Km

Kh
= cm

ch
= β/2α, and is know as the turbulent Prandtl number. α and β follow from

the turbulent spectrum of momentum and temperature.
Now let us analyse what the subgrid TKE equation (2.8) would lead to if the solution

would be completely determined by the subgrid part9. In the LES the subgrid fluxes are
modeled as follow

〈

u′′
i u

′′
j

〉

= τij ≡ Km

(∂ 〈uj〉

∂xi

+
∂ 〈ui〉

∂xj

)

(2.13)

〈

u′′
jθ

′′
l

〉

= −Kh
∂ 〈θl〉

∂xj
(2.14)

If we assume stable conditions in the SBL, the typical length scale λ of the turbulent
eddies is given by:

λ = min
(

∆, cn
〈e〉1/2

N

)

(2.15)

with cn equal to 0.76 and ∆ the representative grid size defined by

∆ = (∆x∆y∆z)1/3 (2.16)

Using the following substitutions, we will rewrite the TKE equation (2.8) after dividing

the equation by 〈2e〉1/2 for computational efficiency reasons:

N2 =
g

θ0

∂

∂z

(

A 〈θl〉 + B 〈qt〉
)

(2.17)

S2 ≡
(∂ 〈uj〉

∂xi
+

∂ 〈ui〉

∂xj

)2

(2.18)
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CHAPTER 2. ANALYSIS OF THE LARGE EDDY SIMULATION MODEL

where A and B are thermodynamical constants and qt the total water.
The TKE equation (2.8) becomes:

∂ 〈e〉1/2

∂t
+ 〈uj〉

∂ 〈e〉1/2

∂xj
=

1

2 〈e〉1/2

[

− KhN
2 +

1

2
KmS2 −

cǫ 〈e〉
3/2

λ

]

(2.19)

Kh and cǫ in equations (2.12) and (2.9) respectively are defined as follow:

ch =
(

ch,1 + ch,2
λ

∆

)

cm (2.20)

and

cǫ = cǫ,1 + cǫ,2
λ

∆
(2.21)

where the unknowns ch,1, ch,2, cǫ,1, cǫ,2 and cm are model constants. When the at-
mosphere is moderately vertically stable,(i.e. λ = ∆), the TKE equation (2.19) can be
written as:

∂ 〈e〉1/2

∂t
+ 〈uj〉

∂ 〈e〉1/2

∂xj
=

1

4
cm∆2S2

[

1 − (ch,1 + ch,2)Rig
]

−
(cǫ,1 + cǫ,2) 〈e〉

2∆
(2.22)

where

Rig =
N2

1

2
S2

(2.23)

This leads to the steady-state solution of the subgrid TKE 〈e〉:

〈e〉 = αS2
(

1 − (ch,1 + ch,2)Rig
)

(2.24)

where the proportionality factor α is given by: α = 1

2

cm

(

∆x∆y∆z
)2/3

cǫ
This relation will later

on be used to check if the solution is dominated by the subgrid part. Equation (2.24)
is the same solution as founded with the Smagorinsky model, where the time derivative
and the subgrid transport in equation (2.8) is taken as 0. From Baas et al.1, we know
that:

Pr =
Km

Kh
=

cm

ch
=

φh

φm
=

1

ch,1 + ch,2
(2.25)

The ratio φh

φm
given by the TKE subgrid model is significantly different then the ratio

calculated from field experiment results, where this ratio equals 1.
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CHAPTER 2. ANALYSIS OF THE LARGE EDDY SIMULATION MODEL

2.3 Background

First of all it is important to know what the atmospheric condition need to be in order to
obtain a SBL. Just before sunset, the thermals in the convective boundary layer are shut
off by a cooling surface. The potential temperature profile is characterized by a positive
curvature and a temperature inversion at the top of the SBL (figure 4.1). This shallow
stable layer of air is formed. This layer is characterised by a strong static stability and
a low level of turbulence. Turbulence is mainly generated mechanically by vertical wind
shear. A weak wind is present at the surface, but becomes supergeostrophic aloft. This
wind profile is know as a nocturnal jet (figure 4.1) and is a consequence of the radiative
cooling, which stratify the air, and decouples from the air above and becomes nearly
frictionless and turbulence free and accelerates due to the pressure gradient. When equi-
librium conditions are present, the Coriolis forced is balanced with the divergence of the
vertical momentum flux, and accelerates the air even more resulting in a supergeostrophic
wind. This wind tends to mix the stable layer under it. The vertical buoyancy flux present
in the SBL has a linear shape (figure 4.1), according to the Nieuwstadt’s 1-dimensional
analysis.

First of all let us define what we have been calling the SBL. The depth of the SBL
is defined using the surface momentum flux. The depth of the SBL is calculated by
first determining the height at which the surface flux drops to 5% (h0.05), followed by a
lineair extrapolation (i.e. hSBL = h0.05

0.95
). In order to analyse the results we will use the

same parameters as used by Baas et al.1 . According to this theory we can introduce a
dimensionless stability parameter z/Λ,

z

Λ
= ζ =

−κz g
θ̄v

〈

w′θ′v
〉

u3
⋆

(2.26)

where Λ is the local Obukhov length,
〈

w′θ′v
〉

the flux of the potential temperature at

a certain height and u⋆ is defined by u⋆ =
4

√

〈u′w′〉
2

+ 〈v′w′〉
2

. Now we can define a
dimensionless shear φm

φm(ζ) ≡
κz

u⋆

√

[

(∂ū

∂z

2)

+
(∂v̄

∂z

)2
]

(2.27)

and a dimensionless virtual potential temperature gradient φh

φh(ζ) ≡
(κz

θ⋆

)∂θv

∂z
(2.28)

where θ⋆ is defined as θ⋆ = −
〈

w′θ′v
〉

/u⋆. Due to the strong stratification present in
the SBL, we can assume that the size of the eddies is not dependent on the height and
thus z does not play a role in ζ for large values of z

Λ
. According to Nieuwstadt7 φm,h

become linear functions and the following linear interpolations can be made12 with φm,h =
1+βm,h

z
Λ
, for a weakly stable atmosphere. We can use the Businger-Dyer function4, which

is φm = φh = 1 + 5 z
Λ
. Those relations derived from observations are strictly only valid

for ζ < 1, but can be a good approximation for larger values of ζ .
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CHAPTER 2. ANALYSIS OF THE LARGE EDDY SIMULATION MODEL

The stability of the SBL can be expressed as a function of a gradient Richardson
number Rig defined as follow:

Rig =

(

g

θv

)

∂θv

∂z
(

∂u
∂z

)2

+
(

∂v
∂z

)2
(2.29)

According to equation (2.29) this Richardson number is a scaled ratio between the
buoyancy and the wind shear, and using φm (2.27) and φh (2.28) we can rewrite the
gradient Richardson number as follow3:

Rig = ζ
φh

φ2
m

(2.30)
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Chapter 3

Case description

In this study we will compare our DALES model with other LES models. By this we hope
to improve the LES model and try to match the data with experimental results. For the
simulation boundary and initial conditions, the same as used by Beare et al2 are used.
The initial temperature profile consist of a mixed layer with potential temperature up to
100m with an overlying inversion of strength 0.01 Km−1, and a surface cooling of 0.25
Kh−1 is used. The atmosphere is simulated during a period of 9h. The geostrophic wind
is set to 8 ms−1 in the east-west direction to generate turbulence. A Coriolis parameter
of 1.39·10−4s−1 is used, which corresponds to a latitude of 73◦N. To increase turbulent
motion a random potential temperature difference of 0.1 K and zero mean is applied
to the first 50m of the domain. The vertical velocity at the bottom of the domain is
maintained at zero, because a non-zero velocity would not be physically acceptable. In a
stable atmosphere, gravity waves or buoyancy waves, can be generated when the adiabatic
lapse rate is lower than the temperature gradient. Those waves are reflected at the top of
the domain, a processes which does not occur in reality. To suppress this, gravity wave
damping is applied above 300m, which is well above the turbulent layer, which has a
height of approximatively 200m2. In order to compute the fluxes at the surface, Monin-
Obukhov similarity is used, with constants βm = 5 and βh = 8, from equations (2.27)
and (2.28), which is slightly different than the values used by Beare et al2. A domain
size of 400m x 400m x 800m is used with a von Karman constant (κ) of 0.4.

A sensitivity study to surface heterogeneities will be performed by adding a surface
temperature perturbation. Let us analyse why surface perturbations should have an
impact on the dynamics of the SBL. From equation (2.3) it follows

∂〈w〉′

∂t
=

g

θ0

〈θv〉
′ (3.1)

where the perturbation 〈θv〉
′ is given by

〈θv〉
′ = 〈θv〉 − 〈θv〉 (3.2)

From equation (3.1) we can see that vertical motion is generated by horizontal temper-
ature perturbations. When we look at the boundary conditions of the LES we see that
the surface temperature is homogeneous. This is certainly not true in the real world,
where rivers can have different temperature.
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Chapter 4

Modifications in the LES subgrid

model

4.1 Problems with the reference model

In order to have an idea of how the SBL is behaving, let us take a look at some common2

parameters, like temperature, wind speed and fluxes.

Figure 4.1: Typical potential temperature and wind profiles of a SBL from various LES
models2

In figure 4.3 time series of the buoyancy flux, momentum flux, and SBL depth are
shown. The SBL height stabilizes within 2 hours. The momentum flux takes more time
to reach equilibrium and stabilizes after 4 hours. During the whole simulation is the
surface cooling down, making it hard for the buoyancy flux to reach a steady state (figure
4.3). Even after 9 hours has the buoyancy flux not reach his equilibrium.

We will use the same model constants as van Zanten11(4.1): Let us now compare our
simulation results with those computed by Beare et al2. In this paper an intercomparison
of different LES models is given. First of all we will look at some variables, averaged over
the penultimate and ultimate hours of the simulation.

From figure 4.4 we can see that the temperature profile has the same shape, although
the top of the temperature inversion is located at a height of 150m instead of 200m. The
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CHAPTER 4. MODIFICATIONS IN THE LES SUBGRID MODEL

Figure 4.2: Typical vertical buoyancy and momentum profiles of a SBL from various
LES models2

ρ0 α β cǫ cm ch cS cN

(

Rig
)

c

- 1.1436 1.5 1.0 0.70 0.12 3cm 0.22 0.76 0.33
+ cǫ,1 = 0.19 ch,1 = 1 0.27

cǫ,2 = 0.51 ch,2 = 2

Table 4.1: Parameters used in our LES, with(+) and without (-) length scale correction.

temperature inversion can usually be found on top of the SBL. The mean wind profile
looks roughly the same but the nocturnal jet peaks at a much lower height then expected
(i.e. at 100m instead of 150m).

From figure 4.5 we can see that our vertical buoyancy profile has a larger value at the
surface but when the height increases, decreases faster as found by Beare et al2. This
means that the buoyancy fluxes are not transported well in our model and also that the
subgrid model dominates. We can also see that the subgrid part dominates. In figure
4.6 a similar situation occurs in figure 4.5 when the height increases. The fluxes are too
much damped in our model. We can also see that again the subgrid part dominates. By
this we expect that the SBL depth will be smaller as can be seen in figure 4.7. Analysing
the reference model has led to the conclusion that vertical transport is not as developed
as it should be.

Let us now take a look at equation (2.24). This equation shows the analytical solution
of the subgrid part of the LES model. As we can see from figure 4.9, the subgrid part of
the TKE agrees with the theoretical solution of the model. We have found that the first
level of data point does not agree with the theoretical solution and has been removed
from the figure. It leads to the conclusion that the subgrid part of the model plays
a dominating role. From the assumption that a subgrid model should not have a lot
influence on the total solution, we can conclude that the used subgrid model is not suited
for SBL simulation, when we are using a 6.25m grid size. If we lower the grid size, from
equation (2.24), we know that we are also lowering the subgrid TKE. Another effect of
a higher resolution is a more dominant resolved part. We are interested in the reason
why other subgrid models can find reasonable results on a resolution of 6.25m, and why

11



CHAPTER 4. MODIFICATIONS IN THE LES SUBGRID MODEL

Figure 4.3: Typical time series for the momentum flux, buoyancy flux and the SBL
depth from various LES models2
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Figure 4.4: Mean potential temperature and wind profile profile of the reference model
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Figure 4.5: Buoyancy flux at the surface and mean buoyancy profile of the reference
model
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Figure 4.6: Mean UW momentum flux profile and momentum flux at the surface of
the reference model
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Figure 4.7: SBL depth of the reference model
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Figure 4.8: φm and φh relations of the reference model
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Figure 4.9: Plot of the subgrid TKE solution using the reference simulation
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Figure 4.10: φmRig as a function of ζ for the reference model

our results are almost fully subgrid determined. Now let us examine the φm and φh

relation in order to understand what should be changed in the subgrid model to solve
this problem. From figure 4.8, we can conclude that φm and φh are not in agreement with
the observations. Only the data points present in the stable boundary layer have been
plotted, because points above the SBL are not turbulent. Recalling equation (2.25), it is
easily observed that the ratio of φm and φh is not equal to 1. Due to the non-linear shape
of φm and φh lets us check if the results are consistent. A way to analyse the behaviour of
both φm and φh is by rewriting equation (2.29) to φmRig = 1

3
ζ because we know that cm

ch

is implemented indirectly as 1

3
in the subgrid model. This relation has been plotted in

figure 4.10. For low values of ζ we see that φh,m = cm,h = 1

3
as expected from the subgrid

model analysis (section 2.2). This means that by investigating the φm and φh relations,
the same conclusion can made as by observing figures 4.5, 4.6 and 4.9: The model we are
using is dominated by the subgrid part.

Let us now search for a solution to improve the model. As mentioned before, field
measurements give a Prandtl number approximately equal to 1 for stable conditions, but
a value of 1

3
is implemented in the subgrid model. From equation (2.25) we know also

that that the Prandtl number is implemented in the LES as the ratio between cm and ch.
Knowing this we can manually ’force’ the model to have a Prandtl number of 1, to obtain
results closer to reality. A length scale λ corrections is implemented to compute eddies
with a size smaller than the representative grid size. This improves the subgrid solution
by making it possible to compute eddies with a size less than the grid resolution. From
the data of the reference model we can conclude that the turbulent eddies are not that
small that a length scale correction λ is needed. This has been observed by looking at
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Figure 4.11: φm and φh relations with a subgrid Prandtl number of 1

the equation (2.15) and equation (2.20). If the size of the eddies would have been smaller
than ∆, we would obtain a different relation for Km

Kh
, according to equation (2.20). This

has not been observed, leading to the conclusion that, length scale correction was not
needed. We can set the subgrid Prandtl number to 1 by changing the constants ch1 and
ch2 to 1 and 0 respectively.

From figure 4.11 we can see that as implemented in the model, the ratio between
φm and φh is around 1 for small values of z

Λ
. But this implementation has not improved

the results, as the data still do not coincide with the field results. The value of φm,h

is larger than the value observed. This implies that λ is always equal to ∆ and thus
equation (2.21) will always be cǫ = cǫ1 + cǫ2 in our simulation. Knowing this we can put
cǫ2 to 0 and cǫ1 to 0.7 for this simulation.

4.2 Improved reference model

In our model we used the same cf as used by van Zanten11 (i.e. 2.5). But as mentioned
in her PhD thesis, other LES model use cf = 2 (e.g. Mason6). Changing this constant
can be a solution to improve the subgrid model. Let us take a look at the consequences
of changing cf . In tabel 4.2 we have not included the length scale correction λ because
the SBL is not stable enough to enter the required regime. The constants have been
calculated using equations (2.11) and (2.12). Using the constants as mentioned in table
4.2, we obtain the results for the relations φm and φh as can be seen in figure 4.12. Using
the constants from tabel 4.2 has greately improved the results from the LES model. In
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ρ0 α β cǫ cm ch cS cN

1.1436 1.5 1.0 cǫ = 0.875 0.096 cm 0.22 0.76
cǫ,1 = 0.875 ch,1 = 1
cǫ,2 = 0 ch,2 = 0

Table 4.2: Parameters used to improve the subgrid model
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Figure 4.12: φm and φh relations of our new reference model

figure 4.12 the LES data matches nicely with observation results. Although the φm and
the φh relations looks nice, let us check them as we did before with equation (2.29) We
can see from figure 4.13, the data is consistent for ζ < 5. For higher values of ζ the data
start to diverge. As we did before, let us compare the common parameters to analyse the
changes. From the mean temperature profile from figure 4.14 we can see that changing
cf and forcing the Prandtl number to be 1 has shifted the inversion height. From this
change we can conclude that vertical mixing in the SBL is improved as wanted. A higher
nocturnal jet means that momentum transport is improved. Let us now take a look at
the fluxes.

From figure 4.16, we can conclude that changing the value of the Prantl number has a
negligible effect on the vertical momentum fluxes (i.e. the mean profile and at the surface).
But in addition changing cf facilitates the vertical transport of momentum, increasing
the amplitude and the height of the transport. Changing the Prandtl number has led
to a less negative buoyancy flux (figure 4.15). But in the improved reference model the
vertical buoyancy fluxes (i.e. the mean profile and at the surface) are greater and reach
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Figure 4.13: φmRig as a function of ζ for the improved reference model
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tings
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Figure 4.15: Surface momentum flux of the three different model settings
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Figure 4.16: Surface momentum flux of the three different model settings
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Figure 4.17: SBL depth of the three different model settings

a greater height before vanishing. As we can see from figure 4.12, the change of the
constant cf (i.e. from 2.5 to 2) has been beneficial for the momentum and the buoyancy
flux. In addition, both φm and φh relations agree with the experimental field results. We
can see that changing cf to a value of 2, has decreased the slope of both φm,h relations.
The SBL depth increases significantly due to the change of cf and is now in agreement
with figure 4.3.

We can now ask ourself why the change of cf has improved the simulation data.
First let us take a look at equation (2.8), (2.9) and (2.21) giving the subgrid dissipation.
Lowering cf has a direct influence on both. From the equations for the eddy diffusivity
of the heat and the eddy viscosity of the momentum (2.11) and (2.12) we know that
lowering cf lowers the value of cm,h and thereby lowers the value of Km,h. This leads to
less subgrid turbulent transport. The subgrid TKE balance is given by equation (2.8)
where the dissipation is given by equation (2.9) and (2.21). Lowering the value for cf

increases the subgrid dissipation, and thus suppresses the subgrid solution. But only
suppressing the subgrid part does not improve the model, especially if all the motion is
calculated by the subgrid model. Changing cf also has a impact on the resolved solution
because the subgrid dissipation is directly connected to the resolved solution. This can
be seen from observing equation (3.1). The dissipation of resolved TKE is roughly equal
to the production of subgrid TKE. Here follows a part of the derivation from de Roode8

beginning with the prognostic equation (2.3) for the resolved velocity. Using Reynolds
decomposition this equation can be rewritten as:
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∂〈ui〉′2
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The last part of equation 4.1 is the resolved dissipation computed in the LES model
and can be decomposed in 3 terms
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− 2(〈Km〉 + K ′
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(
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) (

∂〈uj〉′

∂xi

)

(4.2)

From equation (4.2) we can see that the subgrid flux parameters Km are used in
the resolved part of the model. The first term in equation (4.2) is always negative and
lowering cf lowers Km and thus lowers the resolved dissipation. This leads to more
resolved motion. From this analysis, we can conclude that lowering cf has positive effects
on both resolved motion and subgrid motion: The subgrid fluxes are suppressed by a
lower value of Km,h and the subgrid dissipation is enhanced. On the other hand, the
resolved dissipation is decreased. The effects discussed here should make the resolved
part of the model play a more dominating role than before. This can be observed in
figure 4.18.

From figure 4.18 we can clearly see that although the subgrid part of the model remains
the same, the resolved part of the model is much more important. This means that a
bigger part of the SBL dynamics are directly calculated using the Navier-Stokes equation
(2.3), instead of using the subgrid scale parameterization. This results is exactly what
we are looking for, because, as mentioned in section 2.2, the LES provides only viable
information if the resolved part is dominant.
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Chapter 5

Sensitivity study to surface

perturbations

We can now test our model by performing a sensitivity study to surface perturbations.
In this section we will add a river or a ditch in the landscape with a different temperature
and compare the results to the unperturbed model results, to investigate the effect of
temperature perturbations on the dynamics of the SBL. As mentioned in chapter 3,
adding a surface perturbation will increase the generation of turbulence. In order to
make the two models comparable it is imperative that the mean surface temperature
does not differ in the two cases. This means that

NtotalTunperturbed = NriverTriver + NlandTland (5.1)

where Ntotal is the total grid size, Nriver the number of grid point used for the river and
Nland the number of grid point which are not, and obeying the following rule: Ntotal =
Nriver + Nland. Tunperturbed is the mean temperature of the homogeneous surface. Triver

and Tland are respectively the temperature of the river and the temperature of the rest of
the domain.

In order to avoid a time dependent temperature disturbance due to the river, a con-
stant temperature difference between the river and the homogeneous surface will be
maintained. This means that the river temperature will be maintained at a constant
temperature difference with respect to the mean temperature.

5.1 Rotation results without surface perturbation

In our previous simulations we forced a wind of 8 ms−1 in the u direction. For computa-
tional reasons the rivers are also implemented in the u-direction. To maximize the effect
of the temperature gradient and heat exchange created by the rivers, we will rotate the
wind by 90◦. By doing this the wind will not ’follow’ the rivers but cross them. The wind
will transport the heat from the river to the rest of the domain, and therefore increasing
turbulence and horizontal mixing. Before simulating rivers in the improved LES model,
we have rotated the field for the reasons mention before (i.e. maximizing the effect of the
rivers). Rotating the wind field led to a surprising conclusions as can be seen from the
next figure.
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Figure 5.1: φm and φh relations with rotated wind field
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Figure 5.2: φmRig as a function of ζ for the rotated wind fields.

In figure 5.1 the relations φm and φh are plotted for the unperturbed state. As we can
see, rotating the wind from the u-direction to the v -direction dramatically changes the
dynamics of the atmosphere. Figure 5.3 ilustrates that the u and v component of the
wind are definitely not interchangeable. Before starting to analyse let us first check if
figure 5.1 is consistent with equation (2.29). From figure 5.2 we can see that the data is
consistent with equation (2.29). Now let us take a look at the wind profiles. Näıvely it
can be thought that the u and v component of the wind are interchangeable. In figure
5.3 both wind components are plotted in order to see if they are rotation invariant.

This can intuitively be explained by the Coriolis force present in the model. The
Coriolis parameter is used in the steady-state momentum equation5 and can be found as
well in the Navier-Stokes equation (2.3):

∂u

∂t
= 0 = −ρ−1

∂p

∂x
+ fv −

∂(u′w′)

∂z
(5.2)

∂v

∂t
= 0 = −ρ−1

∂p

∂y
− fu −

∂(v′w′)

∂z
(5.3)

Above the SBL, in absence of turbulence, equations (5.2) and (5.3) reduce to a balance
between the Coriolis and the pressure-gradient. Substituting definitions (2.4) and (2.5)
in equations (5.2) and (5.3) leads to

0 = f(v − vg) −
∂(u′w′)

∂z
(5.4)
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0 = −f(v − ug) −
∂(v′w′)

∂z
(5.5)

A minus sign in the previous equations explains why the u and v component of the wind
are not interchangeable and thus why rotating the wind field changes the dynamics of
the atmosphere. From now on the old wind field will be used, because a deep analysis of
the effect of the rotation is required and this goes beyond the scope of this work.

5.2 Perturbation sensitivity

In the previous chapter we have substantially improved our reference model and we are
now able to implement temperature differences in the surface in order to investigate the
sensitivity of the model. For the temperature differences we have chosen the values 0.1◦K,
0.5◦K, 1◦K and 1.5◦K. We have chosen these values to get a first impression and cover
a broad range of perturbations. We have used a domain of 400m and a resolution of
6.25m in each direction, and the rivers (i.e. the temperature difference) has been set to
one fourth of the domain. This has been done by cutting the domain in four pieces and
attributing a temperature increase to one of them, and a temperature decrease to the
rest of them, according to equation (5.1). According to Beare et al2 a resolution of 6.25m
will give reasonable accuracy and this resolution will also be used. Let us now analyse
the results.

In figure 5.4 evolution in time of the temperature profile is plotted. First of all,
we can see that by increasing the perturbation, we change the potential temperature
profile dramatically. The potential temperature corresponding to a perturbation of 0.5◦K
and 1◦K only varies a little with height, meaning that thermals at the surface will rise
to almost the top of the domain, and leading to a significant vertical mixing. But as
described in the case description gravity wave damping is applied above 300m and is
now unphysically damping vertical motion. In order to bypass this problem, a simulation
using a double vertical domain is a solution. When observing the evolution in time of the
potential temperature profile of the simulation with a tenth of a degree of perturbation,
we can see that a change in profile is started at the top of the domain. This is rather
strange because a perturbation is applied at the bottom of the domain and not at the
top of the domain. A numerical instability could be the result of this, and again, using
a double vertical domain could solve this problem. What we have to keep in mind from
this simulation, is that Beare used an a well mixed vertical layer at the bottom of the
domain, this means that the temperature profile follows the adiabatic lapse rate Γadiabatic.
This profile is favorable to generate turbulence. By adding temperature gradient at the
surface we further enhance the turbulence, leading, in the case of a perturbation of 0.5◦K
1◦K, to a well mixed layer above the SBL. This seems to be not physically acceptable
and maybe this can be resolved by adding the river not at the beginning of simulation,
but after the SBL has reach a (quasi-)steady state.
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Figure 5.4: Time plotted wind profile for different surface perturbations. Solid line
represents the unperturbed state, the dashed line a perturbation of 0.1◦K,
the dotted line a perturbation of 0.5◦K and the dash-dot line a perturbation
of 1◦K
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Conclusion

The case studied here can be divided in two main parts, where the first one was mainly
focusing on improving the LES model in order to be able to implement a temperature
difference in the surface, which was the second part of this study. We have seen that
the reference model could not simulate well the atmospheric evolution during stable
conditions if we use a 6.25m grid resolution. This was caused by a very dominating
subgrid solution and an almost absent resolved solution. A few changes has been made
in the subgrid model in order to improve the final solution. The first one was forcing a
Prandtl number of 1 as found in field experiments. This change has not an influence on
momentum flux, which remains the same. But the buoyancy flux changes significantly.
This is due to the fact that by forcing the Prandtl number to be one, the eddy diffusivity
for the heat has changed as well, whereas the eddy viscosity for momentum was not
affected by this change. Changing the Prandtl number has not significantly improved
the model, it has only ensured that the flux-gradient relations φm and φh became equal
ro each other as observed in reality. The next changes was changing the constant cf ,
responsible for the value of the filter cutoff-frequency in the energy domain. This change
is increasing subgrid dissipation, but it has not been observed that the subgrid solution
was suppressed. Another effect on the subgrid model is the decrease of the subgrid fluxes
by decreasing the eddy viscosity and the eddy diffusivity. By analysing the resolved
part of the model and the subgrid TKE equation used to calculate the evolution of the
atmosphere we demonstrated that changing cf has an impact on the resolved solution by
decreasing the resolves dissipation and thereby increasing the resolved motion. But the
choice of the value of cf is difficult to make, because the cutoff-wavelength of the filter
is not the only parameter related to the subgrid energy. The form of the filter is also
of a great importance. We can conclude that lowering cf has indeed improved the LES
model, but further study is necessary to find the optimal value of cf to further improve
the LES model. An interesting comparison can be made between the SBL as studied here
and DNS results obtained by van de Wiel et al.10. By using a DNS simulation the same
φm,h are obtained. This really astonishing because of the similarity on different scales
(i.e. DNS ∼10cm).

In the sensitivity study to surface perturbations we have rotated the wind field in
order to let the wind cross the rivers and not follow them. We discovered that rotating
the wind has a significant effect on the dynamics, due to an asymmetry in the momentum
equations. The Coriolis force is responsible for those changes. Further study is necessary
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in order to investigate the impact of the geostrophic wind direction on the dynamic
evolution of the atmosphere. A interesting observation was made when simulating rivers
in our model. A temperature perturbation applied at the beginning of the simulation
of ’only’ 0.5K and 1K has a enormous effect on the potential temperature profile of the
atmosphere. We can explain this by noting that we are using a vertically well mixed layer.
When a parcel of air rises, it will follow the dry adiabatic lapse rate, and will rise until
a negative buoyancy force slows it down. What is happening when we apply a surface
perturbation, is that the air parcel above the river is hotter than its environment and
will by this generate a lot more vertical speed. It will take longer to the buoyancy force
to slow it down and thus will the air parcel reach a greater heigth, and can even escape
the SBL. For this reason it is advisable to add the perturbation only when the SBL has
reach a steady state situation, in order to observe the effect of the rivers only. But it is
difficult to say when its most suited to add the temperature perturbation. As seen in
figure 4.17, the SBL height reaches a steady state after 2 hours, but the momentum flux
reaches a steady state after 4 hours (figure 4.16), and the buoyancy flux has not reach a
steady state even after 9 hours. More research is needed on this.

Now will follow a short summary of the conclusions made during this study. Changing
the turbulent subgrid Prandtl number from 1

3
to has made 1 has been beneficial when

analysing the φm and φh relations. Further improvement has been made by changing the
filter constant cf from 2.5 to 2. This change has made simulation results agree with field
measurements, but further study is needed to find the optimal value of cf . Sensitivity
study has revealed that the direction of the geostrophic wind has a great impact on the
SBL dynamics, due to the Corioli force. Further research is needed to understand the
consequences this can have on further LES developments. We can also conclude that
a surface temperature perturbation increases the overall turbulence in the atmosphere,
but more research is needed to investigate, for example, the effect of the wind speed and
direction on the perturbation, the impact of the amplitude of the perturbation and the
effect of the area of the perturbation on the overall dynamics.
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