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Abstract

The Dutch Atmospheric Large-Eddy Simulation (DALES) model is a computational

model to study the flow in the atmospheric boundary layer (ABL). The present study

critically tests a module that has been developed for DALES to simulate buildings

and hills in the ABL, called the Immersed Boundary Method (IBM). The analysis

is done under neutral atmospheric conditions, which entails that heat and moist

fluxes do not play a role in the wind development. Only the velocity shearing

affects the wind profiles. The performance of DALES in this Neutral Boundary

Layer (NBL) is first tested with a flat surface. The NBL simulation by DALES

shows that DALES can approximate the surface layer turbulence structure well and

that convergence is established for grid sizes smaller than ∆x = ∆z = 4m. Only

in the grids directly above the surface is the wind profile, as quantified by the

dimensionless wind shear ΦM and the subfilter-scale turbulent kinetic energy (SFS

TKE) overestimated because the SFS fluxes that dominate, excessively produce

TKE. In the upper part of the ABL it is found that the domain width in DALES is

the key variable for converging results. The IBM module is validated by comparing

the DALES-IBM simulation with Bolund hill observations. The simulated wind

above the Bolund hill by DALES-IBM is approximating the front and ridge velocity

profiles well. The simulated TKE had the correct characteristics as observations

as well although the average error was higher than the average velocity error. The

modelling of the wake of Bolund is the point of interest. The simulation showed

hardly any velocity and TKE in the wake, while the TKE should be high. The

expected reason lies within the shear calculations of the IBM. These calculations

are based on lower Reynolds numbers and calculate too little shear. The simulated

velocity profiles converged, thus the discretisation errors of IBM are limited. The

next steps for IBM are to change the shear calculations and validate the heat and

temperature dynamics.
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1 Introduction

1.1 Dutch Atmospheric Large-Eddy Simulation

The research concerning atmospheric weather forecasting heavily depends on com-

putational numerical models. Common computational models are the Large-Eddy

Simulation (LES), Reynold-Averaged Navier Stokes (RANS) and Direct Numerical

Simulation (DNS). The principe behind LES modeling is a spatial filter such that

most turbulence is resolved (Wyngaard 2004). The smaller, less energetic scales are

parameterized. DNS resolves all length scales and RANS uses a temporal filter. LES

is especially used for domains between 1 and 3000 kilometer, which is too large for

DNS, while the turbulence model of LES is normally better suited for these length

scales than RANS (Travin et al. 2004).

LES is for this reason widely used for modelling the Atmospheric Boundary Layer

(ABL). The ABL is part of the troposphere and it is the region of the atmosphere

which is directly influenced by the surface. It is typically one kilometer high. The

rest of the troposphere is called the free atmosphere. The ABL is influenced by di-

urnal cycles and turbulence due to surface forcing, while the free atmosphere shows

little variation over timescales of a day and smaller (Stull 1988).

The development of LES models started in the late sixties. The LES models im-

proved as research grew and computation costs declined. A recent improvement of

LES is the module to use non-flat surfaces. Earlier LES models used flat surfaces.

However, relief often distorts the weather far away from the hills itself (De Wekker

and Kossmann 2015). Even hills in the Netherlands influence the weather.

The Dutch Atmospheric Large-Eddy Simulation model (DALES) is the LES ver-

sion widely used in Dutch academics (Heus et al. 2010). The first application for

DALES that used non-flat surfaces was a simulation of wind and pollution around

cities, where streets and buildings needed to be distinguished. The possibility for

buildings to be modelled is developed and described by Tomas (2016) and further

developed by Koene (2020). The method used is called the Immersed Boundary

Method (IBM). It models buildings as impenetrable blocks by not allowing velocity,

heat and scalar fluxes through. This technique is not limited to cities and could

potentially suffice as method to implement hills in DALES. Hills are then modelled

as impenetrable blocks on top of the surface.

1.2 Bolund hill

The potential of DALES-IBM for hills is yet unclear. DALES itself has been vali-

dated (Heus et al. 2010), but the IBM module is not. There are a couple of sites

where an extensive amount of wind velocity data has been gathered on hilly terrain,

most notably the Askervein hill in the United Kingdom (Taylor and Teunissen 1987)

and the Bolund hill in Denmark (Berg et al. 2011). Both hills could be used as a
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comparison case to validate DALES-IBM. The Askervein hill is smoothly increasing

with few sections over 20◦ and various models have proven to be able to model the

hill appropriately, see for instance Castro et al. (2003) (RANS) and Lopes et al.

(2007) (LES). The Bolund site is steeper and more complex. It gives rise to recircu-

lation and it is therefore a more comprehensive validation case. There has already

been an extensive study on the Bolund hill between various models, in which LES

models did poorly (Bechmann et al. 2011), and worse than RANS. This was how-

ever an anonymous test and none of the LES models used the Immersed Boundary

Method. This report is the second validation for LES-IBM for wind flow around

complex hills, whereas the first (Diebold et al. 2013) used a different stress calcula-

tion.

All Bolund hill data and information can be found in Berg et al. (2011) and Bech-

mann et al. (2011). The Bolund hill is an island that lies in Denmark (latitude

φ = 55.7◦) and is therefore part of the mid-latitudes like the Netherlands. It is at

most 12 meters tall and its size is 130 (West-Earth) by 75 meters (North-South).

The Bolund hill is therefore smaller than mesa hills (120-360m high), which can be

found in Limburg, and Gelderland in The Netherlands. The validation of DALES-

IBM must therefore not be seen as direct validation for these scales, but as stepping

stone.

The surface layer is the lowest part of the ABL and its height is typically under

100 meters (Kent et al. 2018), which includes the Bolund hill and the wind masts.

The surface layer is therefore the important ABL layer in this report.

The Bolund hill data is retrieved under neutral boundary layer (NBL) conditions.

The atmosphere is determined by velocity shearing forces in the NBL. The NBL is

chosen for this reason, since possible other fluxes such as heat and water will not

influence the results.

1.3 Thesis objectives

Three objectives are posed for this thesis:

• Study the turbulence structure as obtained from DALES in the NBL and

compare the surface layer results to known theory.

• Find the large scale pressure that drives the flow in the Bolund hill experiment.

• Study the performance of DALES-IBM on the Bolund case. This performance

is measured in terms of convergence of the model and in comparison to the

Bolund data and participating models in (Bechmann et al. 2011).
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1.4 Outline

This report is organised as follows. The general theory behind atmospheric flow and

Large-Eddy Simulations is described in section 2. The Immersed Boundary Method

as it is used in DALES is the topic of section 3. The description of the cases for both

the flat runs as for the hill runs is given in section 4. The simulations of the flat

NBL by DALES and its interpretation are presented in section 5. The simulations of

the Bolund simulation and its interpretation are presented in section 6. The Bolund

simulation results are discussed in section 7. The conclusion is drawn in section 8.
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2 Modelling Atmospheric Flow

Atmospheric fluid flow is governed by conservation of mass, momentum, energy and

water content. In this report water content will not be relevant and it will not be

discussed. The remaining equations and the modelling thereof is the topic of this

section. The governing equations will be discussed in section 2.1 and the modelling

of these governing equations by Large-Eddy Simulations will be described in section

2.2. The grid and domain theory for LES is discussed in section 2.3.

2.1 Governing equations

The conservation of mass is described by equation 1. Although air is not incom-

pressible, it will be modelled as such since density fluctuations are insignificant for

mass conservation.
∂ui
∂xi

= 0 (1)

The Einstein notation is used: i = 1, 2 denote the horizontal directions x, y, and

i = 3 denotes the vertical direction z. (u1, u2, u3) = (u, v, w) are the velocity com-

ponents.

The momentum equation for fluids is the Navier-Stokes equation. The Navier-Stokes

equation for Newtonian gases such as air reads

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

− gδi3 + fi. (2)

where t is the time, ρ is the density, p is the pressure, ν is the kinematic viscosity,

g = 9.81ms−2 is the gravitational acceleration, δmn is the kronecker delta and fi
consists of possible body forces. Equation 2 can be simplified for atmospheric flow.

Atmospheric flows have high Reynolds numbers, Re = UL
ν
>> 1·100

1.4·10−5 >> 105 such

that the diffusion term ν ∂
2ui
∂x2j

becomes insignificant. The Coriolis force is present,

since the Earth is a non-inertial reference frame.

fi,cor = εijkujfk (3)

εijk is the Levi-Civita symbol and fk = 2Ω[0,− cos(φ), sin(φ)] is the Earth’s angular

velocity vector, with Ω = 7.3 · 105rads−1 the angular velocity of the Earth and φ the

latitude. f2 will become irrelevant in the Navier-Stokes equation for atmospheric

flow, as can be deducted via scale analysis (Wyngaard 2010). f3 will from now be

called f . The advection term of the momentum equation 2 can be rewritten with

aid of equation 1.
∂uiuj
∂xj

= uj
∂ui
∂uj

+ ui
∂uj
∂uj

= uj
∂ui
∂uj

+ 0 (4)

The Navier-Stokes equation then reads

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
− gδi3 + εij3ujf (5)
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2.2 Large-Eddy Simulations

It is not possible to solve equation 5 analytically and it can only be solved numer-

ically. One method to solve the numerics is LES. LES divides the domain in grid

boxes distinguished per direction (i, j, k). Within the grid box a variable can be ex-

pressed in terms of a filtered mean value from scales larger than grid box size ∆ and

fluctuations with respect to this mean φ′, which is called the subgrid contribution.

φ = φ̃+ φ′ (6)

For LES to properly function, it is necessary that φ ≈ φ̃ and φ′/φ̃ << 1, because

LES calculates φ̃. The filtering operator ·̃ converts the incompressibility formula 1

into
∂ũi
∂xi

= 0. (7)

The Navier-Stokes equation can also be filtered. The elaborated version is shown in

the Appendix. The result, along with the Boussinesq approximation for the density,

reads
∂ũi
∂t

+
∂(ũiũj)

∂xj
= −1

ρ

∂p∞
∂xi
− ∂π̃

∂xi
+ g

θ̃ − θ0

θ0

∂i3 −
∂τij
∂xj

+ εij3ũjf (8)

(Heus et al. 2010), where p∞ is the large scale pressure, π = p−p0
ρ0

+ 2
3
ẽsgs is the

modified pressure and θ is the potential temperature, which reads

θ = T

[
p

pref

]−Rd/cp

(9)

with pref the reference pressure set equal to 105Pa, Rd = 287.04Jkg−1K−1 the gas

constant for dry air and cp = 1.004Jg−1K−1 the specific heat of dry air.

The large scale pressure gradients are not solved within the domain, but prescribed.

It is the most important input setting in DALES for this report. This is done via

the geostrophic wind components Ug and Vg, whose definitions read

Ug ≡ −
1

fρ

∂p∞
∂y

Vg ≡ +
1

fρ

∂p∞
∂x

.

(10)

Furthermore

τij = ũiuj − ũiũj −
2

3
δij ẽsgs (11)

where ẽsgs = (ũiui− ũiũi)/2 is the subgrid kinetic energy. The last equation to close

the set of equations is the approximation of τ by

τij = −Km

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(12)
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where Km is the eddy viscosity (Lesieur et al. 2005), which is

Km = Cmλẽsgs
1/2 (13)

for DALES (de Roode et al. 2017) with Cm = 0.12 and λ a length scale dependent

on the grid sizes. Fluxes of scalars φ are calculated by

ũ′jφ
′ = −Kh

∂φ̃

∂xj
(14)

with Kh = PrTKm, where PrT is the turbulent Prandtl number. All terms dependent

on Km or Kh are so called subgrid-terms. The subfilter-scale energy present in

equation 13 needs to be computed. Its budget equation reads

∂ẽsgs

∂t
+ ũj

∂ẽsgs

∂xj
=

g

θ0

w̃′θ′ − ũ′iu′j
∂ũi
∂xj

+
∂

∂xj
2Km

∂ẽsgs

∂xj
− cε

ẽsgs
3/2

λ
(15)

with cε a proportionality constant. The derivation can be found in Lesieur et al.

(2005) and de Roode et al. (2017). The tilde-operators are now omitted for the rest

of the report for easy readability.

All variables are defined in the grid cell center, except for the velocity compo-

nents. They are defined on the cell face facing the preceding grid cell. The velocity

u(i, j, k) is for example defined at (i− 1/2, j, k). See figure 1. The DALES features

are explained in Heus et al. (2010).
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Figure 1: The grid used in DALES with the properties at their respective

positions. Image taken from (Heus et al. 2010).

2.3 Grid and Domain Sensitivity

The determination of appropriate grid and domain sizes is an important process

for LES simulations. The computational cost is proportional to the number of grid

points in the horizontal directions Nx, Ny and the number of grid points in the

vertical direction Nz. On the other hand, the results improve with finer horizontal

grid lengths ∆x, ∆x and with a finer vertical grid height ∆z. Larger domains also

provide better results. Because of convenience it is selected that ∆x = ∆y, Nx = Ny

and lx = ly.

Grid Sensitivity

The appropriate grid sizes are the largest grid size where the mean statistics have

approached the results of the smallest resolution (Beare et al. 2006). Numerous

studies have been performed to assess the appropriate grid sizes, see for instance

Dai et al. (2021). Beare et al. (2006) suggests that the grid size ∆ = (∆x∆y∆z)1/3

should be ∆ ≤ 3.125m and notes a 20 % error for ∆ = 6.25m in the Stable Boundary

Layer case for an ABL height h of 250m. Sullivan and Patton (2011) advises h
∆
> 60

for the Convective Boundary Layer case. This results in ∆ to be 25 meter for
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h = 1500m, a typical CBL height. The NBL has been studied by Ercolani et al.

(2017) and they suggest ∆x = 16m and ∆z = 4m, for h ≈ 1000m. However, this

was their finest grid size and they did not reach a convergence.

Domain Sensitivity

LES models have to include the entire ABL plus a margin of about 30% in its vertical

domain length lz to correctly model any part of the ABL. It is not possible to only

model the surface layer, because the upper boundary conditions of LES cannot cope

with that.

The width of an LES run lx has to be broad enough to capture all eddy sizes. The

domain width must be selected appropriately.
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3 Modelling hills with the Immersed Boundary

Method

Large-Eddy Simulations use by default a Cartesian coordinate system with a flat

surface, located below the lowest grid boxes. The effect of the surface on the air in

terms of turbulent fluxes just above it is parameterised and dependent on the air

properties in the lowest grid box and on the surface properties. Hills complicate

the grid of LES and the surface forcings, because of the inherent heterogeneity of a

hill. The IBM was developed recently by Tomas (2016) for DALES and this reports

aims to validate his module. The module is described in section 3.1. Its greatest

counterpart to model hills, the Terrain-Following Coordinates method, is shortly

described in section 3.2.

3.1 Immersed Boundary Method

The immersed boundary method uses the same governing equations as an LES run

of a flat surface, with appropriate boundary conditions to prevent flow into obstacles

and to add wall friction effects. The flow in entire domain is first calculated as if

there were no walls. After that, the effect of the wall is added. There are multiple

methods to do so, read for example Diebold et al. (2013) and Bao et al. (2018). The

method used in this research is called the wall function (Koene 2020). An immersed

boundary must be loaded in DALES, with the immersed boundary representing the

hill. The immersed boundary selects grid boxes to be hill, instead of air. A grid

box is either fully air or fully hill. In figure 2 an example is shown of five dark grey

grid boxes that will act as impenetrable and thus as immersed boundaries in their

domain.
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Figure 2: The three types of grid boxes important to IBM modelling. All grid

boxes are indicated by their position (i, j, k). The immersed boundary grids are

dark grey. Adjacent grid boxes to the walls, in light grey, are still influenced by the

wall. The horizontal (black) walls act different than the vertical (red dashed) walls

such that forcings in vertical wall-bound air grid boxes are different than forcings

in horizontal wall-bound air grid boxes.

The IBM module distinguishes free air, wall-bound air and wall grid boxes. The

IBM module adjusts nothing in the free air grid point. In the wall grid points, all

forcings are set such that variables return to their ground surface value. The velocity

then stays zero and the potential temperature stays at the potential temperature of

the ground surface.

The grid boxes that are most extensive to model are the wall-bound air grid boxes,

the light grey grid boxes in figure 2. These boxes can be split in bounded by a

horizontal wall and bounded by a vertical wall, or by both. In case of both, both

the horizontal and vertical wall forcings are applied.

3.1.1 Wall-bound grid boxes bound by horizontal walls

The horizontal walls act as if the surface is now on top of the immersed boundary.

Its effect is that the parametrizations of the surface are now used on level kIB + 1,

with kIB the k value of the highest immersed boundary at the horizontal position

(i, j). In the example of figure 2, this would be 2 for (i, j) and 3 for (i+ 1, j). The

parametrization for the shear is calculated via the friction velocity u∗ =
√
τsfc/ρ and

reads

u∗ =
κs(kIB + 1)

log(∆zkIB+1/z0)− Φ(∆zkIB+1/L) + Φ(z0/L)
(16)
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where s(zkIB+1) is the speed in the grid box at kIB+1, ∆zkIB+1 is the vertical distance

from the Immersed Boundary to the grid cell center of the grid box above, z0 is the

surface roughness and

Φ(z/L) = (1− 16z/L)−1/4 − 2 < z/L < 0

Φ(z/L) = 1 + 5z/L 0 < z/L < 1
(17)

with

L = − u3
∗θ

κg(w′θ′V)sfc

(18)

where L is the Obukhov length, with θ the temperature of the surface, κ = 0.4 the

von Karman constant and (w′θ′V)sfc the virtual potential temperature flux of the

surface.

3.1.2 Wall-bound grid boxes bound by vertical walls

The wall-bound air boxes have a heat forcing and a momentum forcing. All heat

fluxes are set to zero, which is an appropriate condition for a neutrally stratified

atmosphere. The momentum forcings in the vertical wall-bound air boxes are more

extensive. In the DALES scheme, the subgrid flux of momentum and subgrid en-

ergy is already calculated for this grid boxes by earlier modules. Both forcings are

counteracted by forcings with equal, opposite magnitude in the IBM for vertically

wall-bound grid boxes, to ensure no fluxes through the walls. Next to this, a shear

τwall is calculated which will be an extra τ in the momentum equation 8, to create

friction.

The shear is dependent on the parallel components of the velocity to the wall. These

components are defined at half a grid length from the walls. The routine DALES

uses is taken from Efros (2006). Under the circumstances used in this report, the

result for the wall shear τwall is

|τwall|
ρ

=

[
1−B

2
A

1+B
1−B

( ν

∆r

)1+B

+
1 +B

A

( ν

∆r

)B
|stan|

] 2
1+B

(19)

where A = 8.3, B = 1/7, ν ≈ 1.41·10−5 m2s−1, stan is the tangential velocity and ∆r

is the shortest distance from the wall to the middle of the adjacent gridbox (0.5∆x

or 0.5∆y). The first term on the right hand side of the equation is insignificantly

small compared to the right side; when stan = 1ms−1 and ∆r = 1m, the right side

is 1000 times larger. The stress is then proportional to s
2

1+B

tan = s
7/4
tan.

Efros (2006) developed this stress calculation for the buffer layer between the viscous

sublayer and the inertial sublayer where Reynolds numbers are lower. This stress

calculation is not validated for the Reynolds numbers used in this report. This

stress calculation can be related to the stress calculation of the horizontal wall from

equation 16. In figure 3 is u2
∗ = τ/ρ shown for the vertical and horizontal wall, when

(w′θ′V)sfc = 0.
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Figure 3: A comparison between the wall stress τwall and the surface stress τsfc for

common atmospheric velocities. The z0 of this example is 3 · 10−4m, (w′θ′V)sfc = 0.

These settings will come back later in the report.

The stresses are equal for stan = 0.39ms−1 for a grid spacing of ∆x = 2m, which

means the distance from the surfaces to the center is 1m. For stan = 10ms−1 is their

difference a factor of 2.3. Their difference is even larger for larger ∆r and for larger

z0.

Another adjustment in the wall-bound grid points is the use of a damping func-

tion D for the eddy viscosity. It is suggested by Piomelli and Balaras (2002) to

change the eddy viscosity calculation to

Km,wall−bound = DCmλe
1/2. (20)

The free air eddy viscosity equation 13 is multiplied with a damping factor D. The

damping function D is

D = 1− exp[−(r+/A+)3] (21)

with A+ = 25 and r+ =
0.5∆r

√
τwall

ν
. This term is negligible for atmosphere flow with

∆r > 1m because r+ > O(104).

These damping routine and the shear routine become more significant when the

Reynolds number decreases.

The final difference in the wall-bound boxes is the addition of the term
∂e+sgs
∂t

in the

12



subgrid energy equation 15 to the right hand side of the equation, which is

∂e+
sgs

∂t
= −Km

∂2esgs

∂x2

+
Km

esgs

(
−2

(
∂w

∂x
+
∂u

∂z

)2

+

(
2
∂w

∂x
+
∂u

∂z

)2

− 2

(
∂v

∂x
+
∂u

∂y

)2

+

(
2
∂v

∂x
+
∂u

∂y

)2
)
.

(22)

3.1.3 DALES-IBM difficulties

DALES-IBM has a couple of challenges in its use. The most obvious error is the

restriction to a discretised immersed boundary, in contrast to TFC. The immersed

boundaries can only consist of rectangular shapes, which makes it impossible in this

version of IBM to use a curved wall. It is possible that the discretized hills as it is

loaded into DALES acts differently than the smooth hill.

In addition, the calculation of surface fluxes is more prone to errors for hills than

for flat terrain. Compared to flat surface, non-horizontal surfaces have more surface

area per horizontal length that can produce fluxes such as temperature fluxes. This

surface area is either overestimated if horizontal and vertical walls produce the

fluxes, or it is underestimated if only the horizontal walls are taken into account in

the production of these fluxes. Furthermore, these fluxes are dependent on the wind

speed and the wind itself is distorted by the discretisation.

Lastly, penetration velocities occur inside of the immersed boundary, typically of

the order 10−4U , U being the velocity in the wall-bound grid box. The reason is

that the incompressibility equation is applied after the momentum equation. Read

more in Koene (2020) and Pourquie et al. (2009).

3.2 Terrain Following Coordinates

In this study we test the IBM. Another common technique to include obstacles that

can be applied is called the Terrain-Following Coordinate method (TFC). It uses

the coordinates-transformation

z′(x, y) = h
z(x, y)− zgl(x, y)

h− zgl(x, y)
(23)

where z′ is the new height coordinate, h the domain height and zgl the orography

height. This changes the Navier-Stokes equation because of the new vertical coordi-

nate z′ and the new Navier-Stokes has to be solved. There are similar techniques that

also change the z-coordinate on the basis of other properties such as the pressure.

Read more about the TFC in Clark (1977) and advantages of both methods in

Finardi et al. (1993) and Pourquie et al. (2009). In this report, the IBM is used,

since DALES-IBM has recently been developed. An important advantage of IBM is

that the height z anywhere in the domain is the geometric height. A disadvantages
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lies in the the height of the ground level zgl, which is an important parameter for

flow around hills hills. zgl is discretized for IBM, in contrast to the actual zgl of

any hill, and in contrast to the TFC alternative. The parameter zgl will play an

important role later.
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4 Case set-ups

The main objective of this report is to validate the IBM-module from DALES. This

is done by virtually joining the intercomparison study from (Bechmann et al. 2011).

In this study various models participated in the simulation of the wind along the

Bolund hill, including LES models. The results were compared to the data gathered

around the hill as described by (Berg et al. 2011). An important motivation to

choose this study is the availability of the observation data. The Bolund hill data

were gathered under near neutral conditions. The Neutral Boundary Layer has

an infinitely large Monin-Obukhov length L, because (w′θ′V)sfc = 0 in equation 18.

DALES has never been validated for the NBL. For this reason, the first step towards

understanding the DALES-IBM results in non-flat circumstances is simulating a flat

NBL in DALES. The cases to do this are described in section 4.1. The case settings

for the Bolund hill simulation are described in section 4.2. Section 4.3 shortly

describes the relevant output by DALES used in this report.

4.1 Case set-up flat NBL runs

The flat NBL runs were constructed for two goals and their settings will be explained

separately.

Flat NBL set-up 1

The first goal is to answer the question:

• How well does DALES model the NBL for various grid settings?

The results will be compared with NBL theory and observations. The observations

used are from the Bolund experiments (Berg et al. 2011). One wind mast in their

research (M0) was independent of the Bolund hill and its data represents a NBL

atmosphere. It collected data only if |L| > 250m, 5ms−1 < s < 12ms−1 and the

angle was within 5 degrees of the desired angle 270◦ (0◦ is true north, clockwise).

Its data can be found in table 1.

Table 1: The data collected by Berg et al. (2011) that represents a flat NBL

atmosphere. µ is the average and σ the standard deviation.

z[m] u∗[ms−1] s/u∗ u/u∗ v/u∗ w/u∗ e/u2
∗ u′u′/u2

∗ v′v′/u2
∗ w′w′/u2

∗
µ 5.25 0.469 22.57 22.56 0.66 -0.17 5.39 6.40 2.92 1.47

σ - 0.070 1.71 1.70 1.51 0.12 0.67 1.02 0.64 0.13

This specific velocity profile is a function of the large scale pressure gradient but

the geostrophic wind components Ug and Vg that drive this surface velocity, are

unknown. It has been determined that this specific velocity is a consequence of

Ug = 16.7ms−1 and Vg = −3.5ms−1, by extrapolating relations of other runs. The
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method is critically discussed in section 5.2. The potential temperature and the

surface temperature along the entire report is 288K. PrT is 1, following advise from

de Roode et al. (2017) to minimize excessive SFS TKE production. The runs are

prolonged until the results are stationary. A method to save computational time is

to stretch the vertical grid size ∆z. The vertical grid size for a stretched grid is

∆z(k) = ∆z(k − 1) · r (24)

with r = 1.03. The k from where the stretching begins is free to determine. Grids

that are not stretched have ∆z(k) = ∆z(1). The verification that stretching the

grid does not influence the results is done in the second test set 7.

Table 2: The settings of the surface layer runs. All had a domain height of

approximately 2560m and were vertically stretched from k = 1. The geostrophic

wind components are Ug = 16.7ms−1 and Vg = −3.9ms−1.

Run ∆z(1)[m] Nz ∆x[m] lx[m] Nx z0[10−4m]

1 10 72 10 640 64 3

2 10 72 10 3200 320 3

3 4 102 4 640 160 3

4 4 102 4 1024 256 3

5 2 124 4 640 160 3

6 2 124 4 1024 256 3

7 2 124 10 3200 320 3

8 1 147 4 640 160 3

2.2 10 72 10 3200 320 30

Flat NBL set-up 2

The simulation of the Bolund hill requests a different desired velocity profile than

the velocity from the previous section. A different velocity profile in the surface

layer is the result of a different geostrophic wind. The geostrophic wind is an input

parameter in DALES. It is desired to find a generalization between the geostrophic

wind and desired wind profiles in the surface layers. The second set-up is built to

answer the question:

• Is there a general relation between the surface layer velocity and the geostrophic

wind velocity?

For various (Ug, Vg) the surface layer velocities are examined to find a general

relation.
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Table 3: The settings for the runs used in the determination of the relationship

between the geostrophic wind velocity and the wind velocity at z = 5m.

∆z(1) = 10m. lx = 640m, ∆x = 10m, Nx = 64. z0 = 3 · 10−4m.

Run Ug[ms−1] Vg[ms−1] lz[m] ∆z(1)[m] Stretched

11 18.0 -13.0 1275 10 No

12 18.0 -11.0 1275 10 No

13 18.0 -9.0 1275 10 No

14 16.0 -13.0 1275 10 No

15 16.0 -11.0 1275 10 No

16 16.0 -9.0 1275 10 No

17 14.0 -13.0 1275 10 No

18 14.0 -11.0 1275 10 No

19 14.0 -9.0 1275 10 No

15.1 16.0 -11 2555 10 No

10.1 16.7 -3.9 2555 10 No

10.2 16.7 -3.9 2462 10 Yes, from k = 1

Run 15.1 was ran to verify whether the low lz from run 15 results in a similar

outcome as run 15.1. Runs 10.1 and 10.2 are ran to verify if a stretched grid results

in equal results to a non-stretched grid. It turns out that their results are nearly

equal as seen in the Appendix.

4.2 Case set-up Bolund run

The goal of the set-ups with an immersed boundary is to answer the question:

• How well does DALES-IBM model the Bolund hill for various grid settings?

The wind velocity far enough from the hill such that there is no influence from the

hill will be called inflow. For the Bolund simulation is desired that the inflow is

similar to the Bolund comparison case inflow from Bechmann et al. (2011). This

inflow is denoted in table 4.

Table 4: Average inflow for the Bolund comparison case (Berg et al. 2011). The

averages are denoted by ·.

z[m] u∗[ms−1] s/u∗ u/u∗ v/u∗
5.44 0.356 24.39 21.49 11.53

The geostrophic wind input settings to obtain this inflow follow from the flat NBL

results. The selected settings will be explained in section 5.2. To create an inflow

equal to the desired velocity it is needed to use the stripfunction.
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Stripfunction

DALES uses periodical boundary conditions. This means that all properties in the

opposing sides of the domain are exactly the same, including the velocity. The

effect is that the domain acts as if it were prolonged on all sides by domains that

are exactly the same.

Periodical boundary conditions also mean that heterogeneity is repeated every length

lx. In this case, that would lead to a Bolund hill virtually being surrounded by other

Bolund hills. The inflow would then no longer equal the desired inflow, which comes

from the flat sea.

DALES has the option to a stripfunction (van Dorp 2016). This function uses the

result of a run without orography (the reference run) as the input for the run with

orography (the actual run). DALES nudges the boundary of the actual run to the

boundary of the reference run, smoothly decreasing with a standard depth of 10

grid boxes. The inflow of the actual run is in this manner equal to the inflow of the

reference run. Because the reference run is not disturbed by orography, the inflow

at the actual run will be comparable to a longer domain with a flat entrance region.

Horizontal domain size

Because of the stripped boundaries it is chosen to put the Bolund hill in the middle of

the domain. Kaimal and Finnigan (1994) describes multiple separation bubbles with

size h that traveled more than 10h, h being the height of the hill. Smaller bubbles

travel even further. The selected horizontal domain size is therefore approximately

40h after and before the IB, namely roughly 1024 meters.

Surface roughness

The Bolund hill has a different surface roughness than the ocean where its inflow

is coming from. In the current strip function it is not yet possible to change the

surface roughness between the actual run and the reference run. The z0 of water

will be used in this simulation. The effect of z0 on the velocity profiles is smaller

if the hill is steeper (Liu et al. 2019) and the Bolund hill is steep. The importance

of the z0 of the Bolund hill itself is therefore less important than the importance

of having the correct inflow, which is created with its surface having a roughness

length of 3 · 10−4 m.

IBM set-up

The settings for the Bolund simulations are listed in table 5.
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Table 5: Ug = 13.5ms−1 and Vg = 3.5ms−1. z0 = 3 · 10−4m. The vertically

stretched grid starts from 30 meters. All runs had a domain height of

approximately 2560m

Run ∆x[m] lx[m] Nx ∆z(1)[m] Nz

A 4 1024 256 1 148

B 4 1024 256 2 125

C 10 1120 112 2 125

D 10 1120 112 4 103

E 25 1200 48 4 103

Immersed Boundary

All runs need an immersed boundary file which is loaded into DALES. The hill that

is modelled is the Bolund hill, whose contour map is shown in figure 4.

Figure 4: The Bolund contour map with 0.25 m interval. The wind masts are the

red dots. From (Bechmann et al. 2011).

The height of the orography as it is loaded in into DALES, kIB(i, j), is determined

via

kIB(i, j) = round(zIB(i, j)/∆z) (25)

where zIB is the maximum height of the Bolund hill in the horizontal domain of

(i, j).

This will lead to discretisation jumps. The kIB(i, j) looks like figure 5 for run B(∆z =

2, ∆x = 4) as example.
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Figure 5: The Immersed Boundary kIB(i, j) for run B (∆x = 4, ∆z = 2). The

dots are masts 1 to 4.

The other immersed boundaries can be found in the Appendix.

The IBM module is not built for a stretched grid. Thus, the stretching must start

from a higher k than the highest ksfc. For the Bolund simulations, it is chosen to

begin the stretching from h = 30m.

4.3 Output DALES

The output of DALES consists of slab-averaged data and instantaneous 3D fields.

The slab-averaged data can be used for the flat-domain runs, but this is not possible

for runs with hills, since slab averaging is no longer justified. The instantaneous

velocity components and the subgrid turbulent kinetic energy will be important

output. This data is collected on the locations in the grid as indicated by figure 1.

The total turbulent kinetic energy (TKE) is defined as the sum of the resolved and

subgrid contributions

e = esgs +
(ui − ui)2

2
(26)

with ui the average of ui(i, j, k) over the time. It will play a role in the analysis

of the Bolund simulation. The velocity components have to be interpolated to the

center of the grids to take all variables into account at the same point.
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5 Flat NBL wind and turbulence structure

The flat NBL runs were designed to answer how well DALES models the NBL

and whether there is a generalization between the surface layer velocities and the

geostrophic wind. This section is split in two parts according to those questions, with

the simulation of the NBL in section 5.1 and the determination of the generalization

in section 5.2.

5.1 NBL

The neutral boundary layer simulations will be compared by theory and observa-

tions. These include knowledge about the NBL height, the surface layer velocity

profiles and the surface layer turbulent kinetic energy. The results are compared

along these measures.

5.1.1 Domain height

The domain height in the NBL hNBL is defined in this report at the height where

the turbulent stress τ is at 5% of their surface value (Abkar and Porté-Agel 2013)

and is

hNBL = C
u∗
f
. (27)

C is a constant. Garratt and Hess (2002) estimates C to be 0.2 − 0.3 and Kaimal

and Finnigan (1994) 0.25 from observations. Computational models have difficulties

approaching this. Andren et al. (1994) calculates C to be 0.35 with LES, Andren

and Moeng (1993) reports it to be 0.5 with LES, Coleman (1999) 0.6 with DNS.

The NBL height of all eight runs varies with C being between 0.27 and 0.41 according

to equation 27. This means that DALES calculates the domain height closer to the

observations than other LES models from Garratt and Hess (2002).
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Figure 6: The vertical velocity profiles for runs 1-8 in the total ABL. The several

lines are according to the legend and defines in table 2. The values in the legend

have the unit of m.

The profiles in the upper part of the ABL are not convergent and group according

to lx. Runs 1, 3, 5 and 8 (lx = 3200m) have the highest maximum velocity, and

the respective height therefore is lowest. Runs 2 and 8 (lx = 640m) have the lowest

maximum velocity and the respective height therefore is highest. Runs 4 and 6

(lx = 1024m) settle within. No two different lx show the same results. Because

convergence of the velocity profiles for increasing lx has not been established yet, it

is unclear what result DALES would produce for sufficiently large horizontal domain

sizes. The surface layer profiles are alike, though, and more important in the rest of

this report.

5.1.2 Law of the Wall

The velocity profile in the NBL in the surface layer is described by the law of the

wall (LOTW)

s(z) =
u∗
κ
log

(
z

z0

)
. (28)

The velocity profiles that are obtained by the runs 1-8 should approach this profile.

This includes being logarithmic and having the same z0, u∗ as the desired z0, u∗.

The desired z0 is 3 · 10−4m and the desired u∗ can be obtained from table 1 and is

0.469ms−1. u∗ is retrieved from DALES itself and the data from runs 1-8 is fitted
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with this u∗ to the LOTW to obtain a fitted z0. The lowest 60 meters of the runs is

selected for comparison. The results of those fits are shown in table 6.

Table 6: The result of the fits for run 1-8. The important grid parameters are

repeated from table 2. The u∗ from DALES is shown in the uDALES∗ column. The

z0 column shows the fitted z0. The seventh column shows the confidence interval of

z0. The R2 is a goodness-of-fit measure for the z0 fit.

Run ∆x[m] ∆z(1)[m] lx[m] uDALES∗ [ms−1] z0 [10−4m] 95 % CI [10−4m] R2

1 10 10 640 0.45 2.0 1.3-2.7 0.93

2 10 10 3200 0.45 2.0 1.4-2.6 0.94

3 4 4 640 0.43 1.8 1.4-2.7 0.97

4 4 4 1024 0.44 1.7 1.5-2.0 0.97

5 4 2 640 0.45 3.0 2.9-3.2 0.99

6 4 2 1024 0.46 2.8 2.6-2.9 0.99

7 10 2 3200 0.49 6.1 5.5-6.8 0.96

8 4 1 640 0.46 4.8 4.6-5.0 0.99

The velocity profiles in the surface layer can be seen in figure 7 and this figure

subsequently confirms the decision to select the lowest 60 meters for the fit be-

cause the velocity profiles are not affected by the upper part of the ABL yet. It

can be seen that the observed wind speed at the Bolund hill does not lay on the

prescribed LOTW. Their fit for z0 was z0 = 6 · 10−4m for this data set, but still

advised z0 = 3 · 10−4m for the simulations. This should cause a little error in the

determination of u∗.

The R2 of the z0-fits and the z0 confidence intervals confirm that the runs approxi-

mate the LOTW well. Runs that underestimate the u∗ also underestimate z0. It is

possible to scale up the grid size to valuable results, since even the coarsest grid sizes

had a reasonable R2. The z0 fits seem to diverge a lot from the desired z0. Since

the z0 is part of a logarithmic function, it is actually not that far off and mostly

explained by the wrong estimation of u∗.

Runs 5 and 6 (both ∆x = 4m,∆z = 2m) provided the best estimation of z0, even

better than the finest grid run 8 (∆x = 4m,∆z = 1m), with a high goodness-of-fit.

It can be concluded that that isotropic grids estimate z0 better than an-isotropic

grids.

Run 9 was ran to see if the results held for different z0. It showed the same char-

acteristics as run 2. The conclusions are thus expected to be equal for other z0 as

well.
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Figure 7: The simulated velocities in the lowest 60 meters compared to the

Bolund LOTW on a logarithmic scale. The several lines are according to the legend

and defines in table 2. The values in the legend have the unit of m. The data point

is the actual measured average wind speed at mast M0. The input conditions Ug

and Vg were selected such that the wind profiles match the Bolund observation.

The velocities at z = 5m for all runs differ with less than 3%.

Dimensionless wind shear comparison

Another measure to analyse surface layer velocities is the dimensionless wind shear

ΦM over the height. This quantity is a function of the derivative of the velocity and

reads

ΦM =
κz

u∗

√(
∂u

∂z

)2

+

(
∂v

∂z

)2

. (29)

The Monin-Obukhov Similarity Theory predicts that ΦM = 1 over the height, but

(Andren et al. 1994) showed that LES models did not approach this result.

DALES performs better than the models in Andren et al. (1994) since ΦM is closer

to one but is still significantly different than 1, as seen in figure 8.
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Figure 8: The dimensionless wind shear ΦM. The several lines are according to

the legend and defines in table 2. The values in the legend have the unit of m.

Runs 1 and 2, which had the coarsest meshes, do not follow the same pattern as

the rest. They overestimate ΦM for the largest part and are substantially worse

than all other runs. The ΦM of the other runs are especially between z = 20m and

z = 60m close to 1. The outer part of the ABL starts to influence the velocity above

z = 60m and ΦM is no longer expected to follow the MOST. Under z = 20m there

is a kink towards the lowest surface level. This kink is also observed in Ercolani

et al. (2017). The reason may be the stress calculation. The stress in the lowest grid

height is always purely subgrid-stress. The stress transitions from subgrid stress

towards resolved stress over some height as seen in figure 9. This transition could

lead to the error in ∂s
∂z

because it coincides with the error in ΦM.
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Figure 9: The share of the subgrid-flux in the total flux. The several lines are

according to the legend and defines in table 2. The values in the legend have the

unit of m.

Turbulent kinetic energy

The turbulent kinetic energy should be constant over the height in the NBL surface

layer (Stull 1988). It should have the value of e = (5.2−5.8)u2
∗ as seen in the Bolund

data. The simulated total TKE from DALES is plotted in figure 10.
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Figure 10: The results of the total turbulent kinetic energy versus the height.

The several lines are according to the legend and defines in table 2. The values in

the legend have the unit of m. The u∗ in the x-coordinate is the friction velocity

from the DALES run.

DALES is not able to capture this property of a constant e of the NBL. DALES

overvalues the e in the lowest regime and explodes near the surface.

The runs 3-8 show convergence. Runs 3-8 are similar from z = 20m up, which

is also the region where the subgrid-fluxes become insignificant as seen in figure

9. The calculated e at z = 20m is around the desired 5.8u2
∗ as well. Furthermore,

the runs 5, 6 and 8, which had the finest grid sizes, are similar even under 20 meters.

Interestingly, the high error in e for the finest grid sizes in the lowest grid lay-

ers is not fatal for their respective velocity profile; the runs with these grid sizes

modelled the LOTW best. A possible explanation lies in the difference between

subgrid and resolved TKE. The resolved TKE does not blow up near the surface

and declines even a bit. The resolved TKE values are everywhere well within the

reach of (5.2− 5.8)u2
∗.

In Bechmann et al. (2011), models were compared by their vertical TKE profiles.

The other LES models also had difficulty modelling the right e profile.
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5.2 Geostrophic wind

The geostrophic wind is an input setting in DALES and it is desired to find a general

relation between the surface layer velocity in the NBL and the geostrophic wind that

drives it. The geostrophic wind settings and their subsequent velocities at z = 5m

are shown in figure 7. The results will at most differ 3% by using different grid sizes,

as shown in the previous section.

Table 7: The average velocity at ∆z/2 = 5m for runs 11-19.

Run Ug[ms−1] Vg[ms−1] u[ms−1] v[ms−1]

11 18.0 -13.0 12.67 -5.13

12 18.0 -11.0 12.38 -3.95

13 18.0 -9.0 12.16 -2.84

14 16.0 -13.0 11.47 -5.50

15 16.0 -11.0 11.22 -4.38

16 16.0 -9.0 10.98 -3.24

17 14.0 -13.0 10.33 -5.88

18 14.0 -11.0 10.08 -4.74

19 14.0 -9.0 9.53 -3.37

(Garratt and Hess 2002) suggests a method to determine the needed geostrophic

wind using u∗ and reads

Ug

u∗
=

1

κ
log

(
u∗
fz0

)
− A

Vg

u∗
=
−B
κ

(30)

in case the surface velocity is aligned with the x-axis (v = 0). A and B are estimated

from observations to be A = 1.4, B = 4.5, while LES on averages follows A = 1.2,

B = 2.3 (Garratt and Hess 2002). These equation is near-linear, but not easily

rotatable. Next to this, u∗ and z0 may not be known. The following relation

between the geostrophic wind and the velocity at z = 5m is therefore proposed.[
u(z = 5m)

v(z = 5m)

]
=

[
α −β
β α

] [
Ug

Vg

]
(31)

Runs 1-9 were fitted to α and β from equation 31. The R2 of the fit is 0.994

for α = 0.603 and β = 0.146 and thus is the relation from equation 31 a fair

generalization. Possible velocities at different heights can be related via

s(z) = s(z1)
log( z

z0
)

log( z1
z0

)
. (32)
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with z1 a reference height (Stull 1988). The suggested geostrophic wind relation

from equation 31 can be compared to the suggestion from Garratt and Hess (2002)

for the Bolund data, which can be found in short in table 8.

Table 8: The relevant data from table 1 to obtain the geostrophic wind for this

surface layer velocity.

z[m] u∗[ms−1] u/u∗ v/u∗
5.25 0.469 22.56 0.66

Using equation 30 results in [Ug = 16.6ms−1, Vg = −5.5ms−1] and [Ug = 16.9ms−1, Vg =

−3.0ms−1] for observations and LES respectively. The obtained geostrophic wind by

equation 31 for DALES [Ug = 16.6ms−1, Vg = −3.5ms−1] sets within, thus DALES

reproduces a relation between the surface layer and the geostrophic wind that is

better than other LES models that Garratt and Hess (2002) used, but still not in

full accordance to observations.

It is now possible to retrieve the geostrophic wind needed for the Bolund hill simula-

tion. The desired velocity at z = 5m is [7.65, 4.10]ms−1. The corresponding [Ug,Vg]

= [13.5, 3.5]ms−1.

29



6 Comparison of Bolund hill simulations

The Bolund simulation is based on the research of Berg et al. (2011) and the in-

tercomparison study of Bechmann et al. (2011). There is less theory behind flow

over hills than over flat terrain, which draws more attention to the comparison with

observations. The Bolund intercomparison will be explained first in section 6.1.

The results are then shown in section 6.2. The differences between the DALES

simulations are shown in section 6.3. The virtual participation of the best DALES

simulation in the intercomparison study is included in section 6.4.

6.1 Bolund Intercomparison

The Bolund hill is a hill in Denmark that was used for extensive wind velocity data

gathering by Berg et al. (2011). The Bolund hill was selected for research because

it has a more challenging topography than previously studied hills. The inflow from

the west comes from sea and is therefore relatively steady. The wind from the west

encounters a vertical cliff of approximately 10 meters when it comes to land. The

contour of the hill can be found in figure 4.

10 wind masts were installed on various critical places on the island and these masts

collected data on various heights above ground level. The locations of these masts

can also be found in figure 4. They were selected to capture four distinct phases of

the flow over a hill: mast M1 is in front of the cliff, M2 is on the brink, M3 in the

middle and M4 in the wake, when the wind comes from 239◦. The wind profile along

this angle is one of the comparison cases and the line of this angle is called line A

as in figure 4. The other comparison cases are the vertical profiles at the positions

of the wind masts.

The relevant parameters in the research were the speed-up ∆s, the angle of the

wind θ = 270◦− tan−1(u2/u1) and the normalized TKE ∆e. The speed-up equation

reads

∆s =
s(x, zagl)− s0(zagl)

s0(zagl)
(33)

with zagl the height above ground level and s0 the reference wind speed which is the

wind sufficiently far from the hill such that there is no influence. The normalized

TKE equation reads

∆e =
e(x, zagl)− e0(zagl)

s0(zagl)2
(34)

where e0(zagl) is the reference turbulent kinetic energy from sufficiently far from the

hill such that the hill does not influence it. The turbulent kinetic energy is divided

by the reference velocity to be a dimensionless parameter.

The relevant height parameter is zagl. zagl = z − zgl, where zgl is the height of the

ground level, in this case the Bolund hill height.
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The DALES simulations however cannot have the same zgl profile as the Bolund hill,

since the DALES Immersed Boundary height is discretized. The DALES Immersed

Boundary height is called hk.

The runs will have different hk since their dimensions are different. The height

hk that the discretised immersed boundaries correspond to along line A from the

contour map 4 can be seen in figure 11.

Figure 11: The immersed boundary height hk for runs A-E along line A from

figure 4 compared the actual height for the Bolund hill. The distance parameter

along the x-axis will be called r in accordance with the Bolund contour figure 4.

The values in the legend have the unit of m.

The r-coordinate of the wind masts M1-M4 is [-61, -41, 3, 60] m respectively.

The different hk will cause differences for the simulated wind between the runs. It

can already be seen that the immersed boundary of run E rises earlier than those

of the rest, due to the grid size ∆x = 25m. For the smaller grid sizes, the most

significant different is the discretization of the top of the Bolund hill. The hk from

runs B and C have a small, high bump on the top side compared to a broader, lower

bump from run A.

For the horizontal profile figures in this report, it is decided to use zagl = hk, while

for the vertical profile figures, zagl = zagl,Bolund is used.
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6.2 DALES results

First, the results are presented in accordance with the shown profiles in the inter-

comparison. These include the horizontal profiles of the three variables ∆s, ∆e and

the angle of the velocity. These are shown along line A for zagl = 2m and zagl = 5m

and vertically at the locations of masts M1-M4. In all figures, the corresponding

data from the wind masts is allocated by a black circle.

(a) zagl = 2m. (b) zagl = 5m.

Figure 12: Speed-up ∆s of the wind, as defined in equation 33, along line A for

runs A-E, as defined according to table 5 in section 4. The circles correspond to the

Bolund data including its uncertainty. The values in the legend have the unit of m.

(a) zagl = 2m. (b) zagl = 5m.

Figure 13: Angle of the wind along line A for runs A-E, as defined according to

table 5 in section 4. The circles correspond to the Bolund data. The values in the

legend have the unit of m.
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(a) zagl = 2m. (b) zagl = 5m.

Figure 14: Normalized TKE ∆e of the wind, as defined in equation 34, along line

A for runs A-E, as defined according to table 5 in section 4. The locations of the

masts can be seen in figure 4. The circles correspond to the Bolund data including

its uncertainty. The values in the legend have the unit of m.
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(a) Run A-E Mast 1 speedup (b) Run A-E Mast 2 speedup

(c) Run A-E Mast 3 speedup (d) Run A-E Mast 4 speedup

Figure 15: Speed-up ∆s of the wind, as defined in equation 33, at the locations

of Masts 1-4 for runs A-E, as defined according to table 5 in section 4. The

locations of the masts can be seen in figure 4. The circles correspond to the

Bolund data including its uncertainty. The values in the legend have the unit of m.
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(a) Run A-E Mast 1 ∆e (b) Run A-E Mast 2 ∆e

(c) Run A-E Mast 3 ∆e (d) Run A-E Mast 4 ∆e

Figure 16: Normalized TKE ∆e of the wind, as defined in equation 34, at the

locations of Masts 1-4 for runs A-E, as defined according to table 5 in section 4.

The locations of the masts can be seen in figure 4. The circles correspond to the

Bolund data including its uncertainty. The values in the legend have the unit of m.

6.3 Convergence runs A-E

The differences between run A (∆x = 4m,∆z = 1m) and B (∆x = 4m,∆z = 2m)

are for the largest part insignificant. There are two significant differences. The first

is the speed-up on top of the hill, which can be seen in figure 12 between r = −50m

and r = 20m. This region is the only region where their immersed boundary height

hk differ. In both cases does the hk increase one last step on the hilltop plateau. For

both does the speed-up rapidly decrease in front of this step, and increase once hk
is higher. The decrease is caused by the blockade upwind and the increase because

the speed-up is measured at a higher zagl. Interestingly are the profiles of run A

and B downwind from r = 20m resembling and did the earlier differences not cause

permanent differences.

The other significant difference can be found in the normalized TKE profiles. ∆e
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is lower everywhere for run A, especially in the lowest grid levels. The reference

TKE e0 of run A is much higher than of run B. This could also be seen in figure 10,

because run A has the same grid sizes as run 8. Run B, which had the same grid

sizes as run 6, stayed closer to the expected e0. Its ∆e results are therefore better

in the lowest regions.

Run C (∆x = 10m,∆z = 2m) still has comparable results to run A and B. The

speed-up profiles relate closely to those of run A and run B. However, the ∆e profiles

differ in two manners. The drop on the leeward side is gone. Larger grid sizes have

inherently more subgrid contribution and there is more downward wind w. This

pushes more wind over the edge downward and thus is the wind direction closer

to 239◦ than runs A and B. The reference TKE e0 is too high, just like its fellow

an-isotropic grid run A.

The results of run D (∆x = 10m,∆z = 4m) is still within reasonable ranges of

runs A and B. Its ∆e profiles are typically somewhat lower than those of run C,

because grid sizes are larger and thus derivatives smaller. Its speed-up profiles are

still quite similar to A-C. The most significant speed-up error is the inability to

capture the drop in speed-up in front of the ridge.

Run E (∆x = 25m,∆z = 4m) is the first run characterised by wrong ∆e pro-

files and unreliable lower levels in the vertical profiles. The fluxes are dominated by

subgrid contributions and these are not accurate. The speed up profiles still vaguely

resemble the profiles of run A, but the hill has broadened almost 50 meters due

to the discretization. The areas in front of the hill and at the back of the hill are

therefore no longer comparable.

6.4 Comparison Bolund paper

The results from run B are best and will be taken into account for the virtual

participation in the Bechmann et al. (2011) paper. This section is thus solely about

the results of run B. Run B is performing decent in the Bechmann et al. (2011)

paper. Its virtual participation will be divided into its absolute error calculation

and a comparison by its horizontal and vertical profiles.

Absolute error at wind masts M1-M4

DALES-IBM models the speed-up reasonably good and it has a little more difficulty

modelling ∆e. The mean error for the simulated speed-up RS can be calculated using

the wind mast data.

RS = |∆sS −∆sm| (35)

with the subscript S for the simulated, DALES, result and the subscript m for the

measured speed-up. RS is 0.154 for M1-4 and 0.061 for only M1-M3 for run B. The
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average in the intercomparison is only given for this case together with a similar

case. The models on average score 0.173. The mean results are therefore slightly

better than average, but the results are mast-dependent. The simulated speed-up

at M1-3 are superior to the other models.

The absolute normalized TKE error reads

RTKE = |
√
eS −

√
e0,S − (

√
em −

√
e0,m)

√
e0,m

| (36)

with the subscript 0 for the reference value on the inflow is 0.55 and slightly worse

than average, which is 0.50.

Speed-up profiles

The speed-up profiles of run B show mostly the same tendencies as the other par-

ticipants do and as the Bolund data shows. The speed-up in front of the hill is

calculated appropriately and the speed-up on the hill edge as well. The maximum

speed-up is in agreement with theory from (Kaimal and Finnigan 1994) as well, that

states that the maximum speed-up should be approximately

∆smax = 1.25h/Lh (37)

where Lh is the distance from the crest to the half-height point which is approx-

imately 70 meters. The maximum speed-up is then 0.2. The speed-up along the

ridge at zagl = 2m, figure 12, is decreasing faster than most other other models

do. It is however in agreement with the data from the wind masts along line A.

DALES-IBM has the most difficulty representing the profiles around mast M4 from

r = 50m. The hill is steep here and the wind in the lower regions will flow along the

north side of the hill. DALES however creates a tail along the A-line directly after

the Bolund hill with hardly any wind and any turbulence. This can also be seen in

the speed and velocity figures 17.
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(a) Velocity s (b) TKE e

Figure 17: The averaged velocity and TKE profiles close to the Bolund hill for

run B for k = 3.

The low pressure region after an obstacle will normally cause turbulence Kaimal

and Finnigan (1994) and DALES-IBM does not capture this. This could be a

consequence of the low τwall. The velocities along the walls are a little too high

because the wall creates too little shear. The air consequently passed the wake, and

due to little produced shear does the wind also contain less SFS TKE than if more

shear was produced.

The w-profiles of mast M4 are shown in figure 18. The vertical velocity is positive

for the zagl = 2m. This is a sign that separation is occurring, because non-separated

fluid flow typically drops after an obstacle. The DALES simulation has a positive

w for the lowest zagl, but far too little to create w for a substantial recirculation

bubble. The reason could be the underestimation of the downward velocity w at

larger heights. This could push wind towards the recirculation bubble, creating the

inertia the bubble needs.

One of the causes for a downward velocity w behind a hill is the term +
∂Km

(
∂ũi
∂xj

+
∂ũj
∂xi

)
∂xj

in the momentum equation 8, since ∂2ũi
∂x2j

is negative. It can be seen in figure 16d that

∆e is too low at the hilltop height. The low TKE causes a low Km, which causes

too little downward velocity. This could again be a result of the low wall shearing.
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(a) M1 (b) M4

Figure 18: The averaged vertical velocity w at the position of masts M1 and M4

and the Bolund observation.

The vertical velocity in front of the hill is too high, although the slight change in

wind direction at the front of the hill is correctly captured. The wrong w could be

caused by wrong shear calculations. When the shear is too little, this causes too

little deceleration, resulting in too high vertical velocities.

Horizontal normalized TKE profiles

The horizontal ∆e profiles of DALES do not approach the Bolund data as seen in

figure 14. The errors that have not been discussed are the underestimation of the

TKE for zagl = 2m at r = −42m on the edge of the hill, which should be more than

twice as high and the decrease of normalized TKE along the ridge in the DALES

simulation while the observed TKE increases. The underestimation on the edge

could be a consequence of too little shearing as the wind rises along the escarpment.

The updraft of wind is indeed too high in DALES compared to the results as shown

in figure 18 and the TKE is a little too low.

A reason that the values are typically too low on the edge is the used z0 in the

simulation. The hill in DALES acts as if it has the surface roughness of water.

DALES then wrongfully calculates the τsfc. Next to this, the updrafted TKE diffuses

along the wind. Since the updrafted TKE is underestimated, it is not possible to

diffuse this TKE in DALES.

The ∆e along the ridge is difficult to compare, because the bump in hk causes too

much change compared to the actual Bolund ∆e that creates unreliability in the

results.
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Vertical normalized TKE profiles

The vertical ∆e profile at M3 is in accordance to the Bolund data. DALES under-

estimates the ∆e at M4 as it is in the wake, although it estimates ∆e much better

above zagl = 10m. The normalized TKE at M1 and M2 are off. The simulated

TKE at M1 has a fluctuating profile while the Bolund data does not have that. The

escarpment rises in stages in the simulation. This could cause those fluctuations

because of non-smooth flow along the escarpment. The TKE at M2 is off because

DALES did not capture the updrafted TKE along the escarpment well. This was

also discussed in the horizontal TKE profile section.

40



7 Discussing the Bolund simulation

The discussion is started by a note of the other LES models in the intercomparison.

Afterwards, the topics of interest within the scope of the simulation are grouped:

some remarks concerning the simulation itself are discussed first, the shear model

is discussed second and the effects of the discretization third. The possibilities of

improvement of the IBM out of the scope of this research are bundled by a moist

and temperature section and the remainder.

Other LES models simulating Bolund

There were 6 LES models that took part in the original intercomparison. They

performed worse than the 2-equation RANS models. Three of these 6 LES models

used laminar inflow and an unspecified number of LES models were zonal LES-

models. These zonal LES-models are actually closer to RANS simulations. It is

unclear whether the LES models used TFC or IBM, but the absence of discretization

jumps suggests that the few true LES models used TFC. Diebold et al. (2013)

later modelled the Bolund hill with LES-IBM substantially better than average and

better than DALES-IBM. They used a different shear model than DALES, which

emphasises that a fault may lie in the DALES shearing calculation.

General Bolund simulation remarks

A possibility to improve the simulation is a change of boundary conditions. The

stripfunction influences the result, especially in the tail of the wake. The results here

are pushed towards a flat velocity profile, while it may still be influenced by the hill.

A forced inflow instead of developing one via the cyclic boundaries is suggested for

better research possibilities to the wake. This is in development. Another solution

is to increase lx.

Next to this, the surface roughness is heterogeneous around the Bolund hill. DALES

has the option for heterogeneous surface roughness but this has not been adapted

for the stripfunction, where the reference run (that is flat and produces the inflow)

should have a different surface roughness than the actual run (that has the immersed

boundary). The connection of IBM with the heterogeneous surface roughness is

important since hills typically consist of multiple surface types with different surface

roughness.

Shear in the IBM

The shear along vertical walls is for IBM for the Bolund simulation more than twice

as small as the horizontal shear under the conditions of the Bolund simulation. A

smaller shear leads to less deceleration and thus the overestimation of velocities,

which indeed happened on several spots along the Bolund hill. The horizontal wall
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shear τsfc from equation 16 is based upon theory that is built for the Reynolds

numbers of simulations like these. The vertical wall shear τwall from equation 19

is not. The friction coefficient along the vertical walls, which is proportional to

τ/s2
tan, is proportional to s−0.25

tan for the vertical walls. At Reynolds numbers > 106,

these changes for the friction coefficient are no longer expected (Khan et al. 2018).

Furthermore, τwall is a function of ∆r−0.25 and as the IBM will be used for larger

domains, this term will become even smaller. A better shear model needs to be

implemented for the vertical walls. A model based on the the friction calculations

for the horizontal walls is advised as there is theory to back this.

Discretization errors

The results are negatively affected by the non-smoothness of the immersed boundary

height hk. This is clearly visible in figure 12 in the difference between the run A and

B speed-up at the hilltop and in the plots of the larger grid sizes for ∆e. The speed-

up profiles however were similar for runs A-D in terms of the speed-up in front of

the escarpment and just above it and the vertical profiles were similar throughout.

Simulating velocity profiles around hills is thus still acceptable for Lx/∆x = 13,

Lx being the length of the hill and h/∆z = 3, which were the settings for run D.

The ∆e profiles never showed good convergence, but eventually did the isotropic

run outperform a finer an-isotropic run. It is thus recommended to keep the grid

isotropic if the TKE matters.

The non-smoothness of the IB-file might cause errors for hills with gradients different

than 90◦. In this report most gradients were either 0◦ or 90◦, because the escarpment

was near 90◦ at the front of the hill. Possible errors for different gradients are not

substantially applicable in the Bolund simulations and could not be investigated.

An improvement to reduce discretization errors might be found in Bao et al. (2018).

A thinner grid of the orography can be loaded into DALES. The velocity in the

grids next to the walls are interpolated on a logarithmic scale with the use of the

distance between the grid and the closest orography-point. In this manner can the

wind ’feel’ an orography different than rectangular.

This method could also solve the difficulty of surface parametrisations of tempera-

ture fluxes.

Absence of moist and temperature fluxes

This research has been done with the assumption that no moist was present in the

atmosphere and that the atmosphere was neutrally stratified. DALES is therefore

unvalidated for the moist and temperature fluxes in hilly terrain. A possible refer-

ence case could be the Panosetti et al. (2016) paper.

The calculation of the moist and temperature fluxes for IBM in DALES are not
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as developed as those of the shearing fluxes at this moment. The temperature

parametrisations on the horizontal walls are for instance all based on one temper-

ature setting. Certain parts of the hills might have different surface temperatures

due to radiation or non-neutral stability conditions.

Other possible improvements

The main goal of this research was to evaluate the wind profiles around a hill to

validate DALES-IBM. The effect of hills on the downwind profiles are yet to be

evaluated. This is important research considering orography if the results of a com-

bination of hills is to be evaluated.

DALES has the option to scale the Km to a different length parameter λMason. Now,

λ is the grid length (∆x∆y∆z)1/3, but is can be switched to a length dependent on

κz with the Mason length scale (read more in de Roode et al. (2017)). This could

potentially solve the excessive mining of esgs at the surface because it decreases the

subgrid flux (Mason 1989). The surface eddy viscosity is then improved. However,

this method is not integrated into IBM yet. The κz can be replaced with κr, r being

the distance to the wall.

The poisson solver, which solves the mass conservation equation, is applied after

the momentum equation. This leads to the small penetration velocities inside im-

mersed boundaries. It might be possible to let the poisson solver know what grids

to skip.
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8 Conclusion

The conclusions of this paper can be divided into conclusions over the NBL simula-

tion and over the Immersed Boundary Method.

The NBL simulations of DALES converged into the theoretical result for the surface

layer.

The surface layer velocity profiles in the NBL are all near-logarithmic, but in the

transition from the parameter-based lowest grid height to the resolved velocities in

the higher regions does the dimensionless wind shear ΦM make a kink to approxi-

mately 1.5 for all geometries. This part of the surface layer is subgrid dominated.

The simulation also overestimates the subgrid turbulent kinetic energy in this part.

Using an anisotropic grid enhances the excessive production of SFS-TKE and di-

verges the velocity from the LOTW even more.

The velocity profiles in the upper part of the ABL are strongly dependent on the

domain width lx/h and convergence has not been found. Runs with broader domain

widths had a higher hNBL. The surface layer velocity and TKE are not dependent

on lx.

Runs with grid sizes from ∆x = ∆z = 4m and smaller are simulating the correct

turbulence structure in the surface layer. Coarser grid sizes will diverge the velocity

profiles from the desired logarithmic velocity profiles. The NBL results were used

to develop a relation between the surface layer velocity and the geostrophic wind

components Ug and Vg. This relation can be approximated as linear. The found

relation is in close agreement with (Garratt and Hess 2002) and is consistent in

DALES for grid sizes up to ∆x = ∆z = 10m.

The Immersed Boundary Method module in DALES is a good method to model the

velocity profiles in front of hills and along hills like the Bolund hill in NBL conditions.

The results around the Bolund hill are good and better than the average model in

(Bechmann et al. 2011) in front of the hill and on the ridge.

DALES-IBM is not suitable now to solve the dynamics in the wakes behind hills. The

problem of the wake dynamics has to be solved before IBM can be used in situations

where multiple hills or buildings succeed one another. It could potentially be the

cause of the wrong τwall calculations.

The TKE profiles are more off than the speed-up profiles and slightly more off than

the average model from the intercomparison.

The speed-up results are less volatile to changing grid sizes than the TKE. For the

speed-up is the simulation with ∆x = 10m, ∆z = 4m still good. This suggests that

the ratios of horizontal hill length to horizontal mesh size of Lx/∆x = 13 and hill

height to vertical mesh size h/∆z = 3 are acceptable, while the suggestion is to use

Lx/∆x = 36, and h/∆z = 6 to minimize the TKE errors, because only ∆x = 4m,

∆z = 2m performs acceptable.
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Appendix

Filtering

Any variable φ will be split in a resolved part φ̃ and a subgrid part φ′ for scales

smaller than the gridsize. For LES to properly function, it is necessary that φ′

φ̃
<< 1.

φ̃ is also an operator on φ, averaging over the gridbox. Its use is described in

(Reynolds 1895). For the incompressibility equation, using the operator leads to

∂ũi
∂xi

= 0. (38)

Any φ can be split according to

φ = φ̃+ φ′ (39)

and the momentum formula 2 can thus be rewritten to

∂(ũi + u′i)

∂t
+
∂(̃uiuj + ũiu

′
j + ũju

′
i + u′iu

′
j)

∂xj
= − 1

ρ̃+ ρ′
∂(p̃+ p′)

∂xi
−gδi3+2fεij3(ũj+u

′
j)∂k.

(40)

Since φ′ are subgrid contributions, the mean of φ′ over a gridbox will be zero φ̃′ = 0.

Calculating the mean of φ over any gridbox loses the singular φ′ contributions. First,

the pressure term in equation 40 has to be modified to average this term.

1

ρ̃+ ρ′
∂(p̃+ p′)

∂xi
≈ 1

ρ̃
(1− ρ′

ρ̃
)
∂(p̃+ p′)

∂xi
≈ 1

ρ̃

∂(p̃+ p′)

∂xi
− ρ′

ρ̃

∂p̃

∂xi
(41)

Averaging equation 40 then leads to

∂ũi
∂t

+
∂(ũiuj + ũ′iu

′
j)

∂xj
= −1

ρ̃

∂p̃

∂xi
− gδi3 + εijũjf (42)

ũ′iu
′
j << ũiuj. (p0, ρ0, θ0) will be a reference state, the background (p, ρ, θ).

∂p0

∂x3

= −ρ0g (43)

is the hydrostatic balance. p∞= p0 + ρ0gz is called the large scale pressure. The

Boussinesq approximation will be used, along the notion that no water content is

used in this paper, and this states that ρ̃ ≈ ρ0 if g is adjusted to g
(

1− θ̃−θ0
θ0

)
(Stull

1988).

∂ũi
∂t

+
∂(ũiuj)

∂xj
= − 1

ρ0

∂(p̃− p0 + p∞)

∂xi
+ g

θ̃ − θ0

θ0

δi3 + εij3ũjf. (44)

Along with the adjustment towards τ

τij = ũiuj − ũiũj −
2

3
δij ẽ (45)
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where ẽ = (ũiui− ũiũi)/2 is the subgrid kinetic energy, which will prove to be handy

later, does the equation become

∂ũi
∂t

+
∂(ũiũj)

∂xj
= − 1

ρ0

∂p∞
∂xi
− ∂π̃

∂xi
+ g

θ̃ − θ0

θ0

δi3 −
∂τij
∂xj

+ εij3ũjf (46)

where π = p̃−p0
ρ0

+ 2
3
ẽsgs is the modified pressure, θ the potential temperature.

Runs 10 and 15

Figure 19: The velocity profiles of runs 10.1 and 10.2.

Figure 20: The velocity profiles of runs 15 and 15.1.

Adjusted DALES code

• The subgrid TKE is added to the fielddump output.

• The extra up(i,j,1) and vp(i,j,1) calculation in modibm is removed.

• The correction from bcheight + 1 to ksfc in modsurface
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• The use of dzf(ksfc) instead of zf(ksfc) in the calculation of Cm in modsur-

face.

• Double /dx removed in modibm in tempwp calculation.

• With the use of simid = Netid is established that the applyIBM routine

doesn’t function for the reference run.

• nudgeboundary is placed later in the program module.

• The run will be aborted when IBM is used without lmostlocal.

• Nair, libm and Nwall were wrongfully deallocated.

• dthvdz is translated to (i, j, ksfc).

• wp is also set such that w is zero at lnormz in modibm.

• A missing ρ was added in advecc2nd

• The second Obukhov loop is no longer fatal when lmostlocal is on.
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Immersed Boundaries

(a) Immersed Boundary for run A with ∆x = 4,

∆z = 1.

(b) Immersed Boundary for run B with ∆x = 4,

∆z = 2.

(c) Immersed Boundary for run C with ∆x = 10,

∆z = 2.

(d) Immersed Boundary for run D with

∆x = 10, ∆z = 4.

(e) Immersed Boundary for run E with ∆z = 25,

∆z = 4.

Figure 21: The immersed boundaries as used for runs A-E.
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