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Abstract

Turbulent transport is present on a range of scales from a few times the height of the boundary layer to the
Kolmogorov scale. Numerical weather prediction (NWP) models are not able to resolve any turbulence
that is present at scales smaller than their horizontal grid size, so they parametrise it entirely. Advances
in computational power allow NWP models to move to finer resolutions. Below resolutions of about
10 km, they enter the ’grey zone’, where part of the turbulent scales can be resolved. The remaining
subgrid-scale turbulent fluxes still need to be parametrised. In this study, the scale dependency of these
subgrid-scale turbulent fluxes is diagnosed for NWP models that operate at grey zone resolutions. Special
attention is paid to the horizontal subgrid fluxes. Furthermore, the validity of a possible parametrisation
on the basis of an eddy diffusivity is discussed. The DALES Large Eddy Simulation (LES) model is used
to diagnose the turbulence and to provide a three-dimensional field with a high resolution. Two cases
are considered: a convective boundary layer (CBL) in which the buoyancy flux has strong contribution
from the moisture flux and a CBL with strong wind shear and subsidence. The LES fields are coarse-
grained to represent NWP models of different grid sizes. The subgrid-scale turbulent fluxes that would
be parametrised in the NWP model, can be diagnosed from the coarse-grained field. This approach
proves to be a valuable diagnostic tool for vertical subgrid fluxes. Flux partitioning shows that the
subgrid contribution to turbulence starts dominating over the resolved part above scales of about 1 km,
in good agreement with the literature. The grid size at which subgrid contribution becomes larger than
the resolved is slightly different for the structures of temperature and humidity, suggesting those scalars
should be parameterised separately. Horizontal subgrid fluxes start dominating over the resolved fluxes
at the same scale as for the vertical fluxes, beyond 1 km resolutions. The horizontal subgrid fluxes are
of about the same magnitude as the vertical fluxes in the entrainment zone, whereas they are two orders
of magnitude smaller in the middle of the boundary layer. Although the horizontal fluxes are smaller
in comparison to the vertical fluxes, they are not negligible. Overall, the magnitude of the horizontal
subgrid fluxes increases with grid size, just like the magnitude of the vertical fluxes. This effect is even
more evident in the simulation case with a strong wind shear, because the momentum flux is drastically
increased. If the magnitude of the horizontal subgrid fluxes does not decline for large grid sizes, it is not
justified to neglect horizontal fluxes entirely at those large grid sizes. The contribution of the subgrid
transport to the tendency of the mean quantities in the NWP model is indicated by the flux divergence.
Because of periodic boundary conditions, the slab-averaged flux divergences are zero. So, to estimate the
magnitude of the flux divergences the width of the probability density function is used. It is found that
the vertical and horizontal transport contribute similarly to the tendency of the mean for grid sizes at
grey zone resolutions. Horizontal transport cannot be neglected in the grey zone, as it is at NWP grid
sizes above 10 km. Finally, the eddy diffusivity for the vertical and horizontal direction were compared.
The eddy diffusivity for the vertical direction increases with grid size in the grey zone, and ultimately
reaches an asymptotic value for a grid size of 3.2 km. This behaviour is in agreement with the literature,
which also shows that the eddy diffusivity saturates for a certain grid size. The behaviour of the eddy
diffusivity for the horizontal direction does not resemble the behaviour for the vertical direction. This
anisotropy suggests that the eddy diffusivity has to be defined separately for each direction.
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1 Introduction

The scale of turbulent transport ranges from the largest eddy sizes at the scale of the boundary layer to
the smallest eddy sizes where the turbulent kinetic energy is dissipated. In the past, numerical weather
prediction (NWP) models did not have a fine enough resolution to resolve turbulence. However, tur-
bulence is an important mechanism for the distribution of heat, moisture and momentum, so it needs
to be parametrised. The ever-increasing computational power has made it possible to keep refining the
resolution of NWP models. Regional weather forecast models currently use grid sizes down to 1 km.
Below a 10 km resolution these weather models can resolve a fraction of the turbulent transport, but not
all of it. This region, below 10 km resolutions, is called the ’terra incognita’ or ’grey zone’ (Wyngaard
(2004)). The remaining unresolved turbulent fluxes need to be parametrised. Previously, Honnert et al.
(2011) and Shin and Hong (2013) used high-resolution modelling data to diagnose the dependency of the
resolved flux on the applied horizontal grid size.

Although the parametrisation of subgrid horizontal fluxes is commonly applied in turbulence-resolving
atmospheric models, almost no attention has been paid to the scale dependency of horizontal fluxes at
grey zone solutions. The aim of this thesis project is to better understand how to capture the scale depen-
dency of subgrid fluxes needed in parametrisations for NWP models that operate at grey zone resolutions.
To this end we will use three-dimensional fields obtained from the high-resolution turbulence-resolving
DALES Large Eddy Simulation (LES) model. The latter model solves the conservation equations of
heat, momentum and moisture at spatial resolutions that are typically in the range of 3 to 100 m. Two
different simulation cases are run in the DALES model. The buoyancy-driven convective boundary layer
(CBL) simulation case as in De Roode et al. (2004) is used as well as a CBL case with a high wind
speed and subsidence. A coarse-graining approach based on Honnert et al. (2011) is used to diagnose the
fluxes of temperature or humidity for grids of different sizes from the information from the LES model.
In addition, the horizontal flux divergence is even more directly connected to how the horizontal subgrid
transport impacts the tendency of the mean in NWP models. The flux divergences will be investigated
for different grid sizes at grey zone resolutions.

Kurowski and Teixeira (2018) stretched their LES grid sizes to match NWP scales, in order to find vertical
and horizontal subgrid heat fluxes in a dry convective boundary layer from their LES parametrisation.
They found that the vertical subgrid heat fluxes increase steadily for larger NWP grid sizes. Around a
grid size of 10 km its asymptotic value is reached. Conversely, horizontal heat fluxes decrease slightly and
then rapidly for increasing grid sizes. Because we coarse-grain the original LES fields instead of using a
parametrisation, it will be interesting to see how the results compare for our approach.

In addition to the diagnosis of the fluxes, it will be attempted to construct a parametrisation for the
horizontal fluxes. A parametrisation on the basis of K-theory makes sense, because a similar scheme
is also used for subgrid fluxes in large eddy simulation models. Moreover, Boutle et al. (2014) already
use K-theory in their parametrisation for NWP models. They have parametrised the subgrid fluxes
using a Smagorinsky model that solves the steady-state subgrid TKE equation using a down-gradient
diffusion approach for the buoyancy flux and wind shear production term. The total turbulent fluxes
depend partly on this parametrisation, and the contribution from the latter depends delicately on the
applied mesh size. Also, Simon et al. (2019) have assessed the grid dependency of four LES turbulence
models, the Smagorinsky model, a turbulent kinetic energy order-1.5 (TKE-1.5) model, and two dynamic
reconstruction models, using simulation data at resolutions from 25 m to 1 km. They found that the
first two models, based on defining an eddy diffusivity, did not perform well for coarse resolutions. With
our coarse-grained results, we will be able to diagnose the scale dependency of the eddy diffusivity K.
In DALES, isotropic diffusion is used (Heus et al., 2010). It will be evaluated whether this is a valid
assumption if the horizontal grid resolution becomes much larger than the vertical grid resolution, as is
the case in NWPs. When the diffusion is anisotropic, separate values of the eddy diffusivity K have to
be found for the horizontal and vertical direction.
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In the following, a theoretical background of DALES and the subfilter-scale models will be given. The
coarse-graining approach and method of flux diagnosis will be outlined as well as the simulation cases
used in the study. The methods of parametrisation using K-diffusion will also be explained. Finally, the
results for the vertical fluxes, horizontal fluxes and K-diffusion approach will be discussed.

4



2 Theory

2.1 DALES

DALES resolves turbulent scales larger than a certain filter size, and uses a parametrisation for the smaller
scales. Global weather forecast models cannot resolve turbulence, because their grid sizes are above 10
km. Regional weather models can reach a resolution of 1 km, but only resolve part of the turbulence and
need a parametrisation for the remaining part. Direct Numerical Simulation (DNS) solves turbulence
up to the Kolmogorov scales which is why it does not require a subgrid model. However, DNS covers a
domain of a few metres across and is only able to handle low Reynolds number flows. DNS is not suitable
to study atmospheric flows with convective clouds, since convective clouds have scales up to a few km.
For the purpose of this research LES is the most suitable tool, because it can give a reasonably detailed
field of the velocities, temperature and moisture, as well as span multiple square kilometres of area. This
makes it possible to do a study in the grey zone of NWP.

The key variables used in DALES are the three velocity components ui, the liquid water potential temper-
ature θ, the total, water vapour and cloud liquid water specific humidity qt, qv and ql, the subfilter-scale
turbulent kinetic energy e and scalars like rain or chemical species.

DALES simulates the atmosphere over time by using filtered fluid dynamics equations. This makes it
possible to resolve the scales greater than the filter length, while accounting for the subgrid fluxes. Eq. (1)
is the continuity equation (conservation of mass). Eq. (2) is the momentum equation including buoyancy
and the Coriolis force. Finally, Eq. (3) accounts for the time dependency of a certain scalar quantity φ,
for example the liquid water potential temperature or the specific humidity. The tildes denote a filtered
variable. For large Reynolds number flows, typical for the atmosphere, viscous transport terms can be
neglected.

∂ũi
∂xi

= 0 (1)

∂ũi
∂t

= −∂ũiũj
∂xj

− ∂π

∂xi
+

g

θ0
θ̃vδi3 + Fi −

∂τij
∂xj

(2)

∂φ̃

∂t
= −∂ũj φ̃

∂xj
−
∂Ruj ,φ

∂xj
+ Sφ (3)

Here, π = p̃
ρ0

+ 2
3e is the modified pressure, δij is the Kronecker delta, Fi includes other forcings, such

as the Coriolis acceleration, and τij = ũiuj − ũiũj + 2
3e is the deviatoric part of the subgrid momentum

flux. The virtual potential temperature θv is related to the potential temperature θ and total humidity
qt as,

θv = θ(1 + (
Rv
Rd
− 1)qt), (4)

in the absence of clouds (De Roode et al., 2004). Rv and Rd are the specific gas constants for water
vapour and dry air, respectively. The factor Rv

Rd
− 1 is often approximated to 0.61. Sφ denotes the source

terms, such as radiative terms, and Ruj,φ are the subfilter-scale scalar fluxes (Heus et al., 2010).

2.2 Subfilter-scale models

In the filtered DALES equations above, momentum flux τij and and scalar flux Ruj ,φ, have to be
parametrised. According to Deardorff (1980) τij and Ruj ,φ can be given as

τij = ũiuj − ũiũj −
2

3
δij ẽ = −Km

(
∂ũj
∂xi

+
∂ũi
∂xj

)
, (5)

Ruj ,φ = ũ′′j φ
′′ = −Kh

∂φ̃

∂xj
. (6)
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The 2
3δij ẽ term is compensated by the extra term in the modified pressure. Km is the eddy viscosity for

momentum and Kh is the eddy diffusivity for scalars. Both coefficients can be taken proportional to the
subfilter-scale TKE e,

Km = cml
√
ẽ (7)

Kh = chl
√
ẽ. (8)

Here, l is the characteristic length scale of the subfilter-scale eddies and cm and ch are the proportionality
constants for momentum and scalar contributions, respectively. In DALES, the geometric mean of the
grid sizes ∆x, ∆y and ∆z is used as a length scale l∆, as introduced by Deardorff (1973),

l∆ = (∆x∆y∆z)
1/3

. (9)

2.3 Length scales

Several models for the length scale l have been proposed, that are different from l∆ in Eq. (9). The
notation for the different length scales was taken from De Roode et al. (2017). Firstly, Deardorff (1980)
modifies the length scale l∆, to account for a situation where l is much smaller than the grid size. This
happens for example in stably stratified regions. A measure for vertical atmospheric stability is the
Brunt-Väisälä frequency N . It expresses the angular frequency at which an air parcel will oscillate when
it is vertically displaced. N is given by

N =

(
g

θ0

∂θv

∂z

)1/2

. (10)

In a neutral atmosphere, N2 = 0, and by extension ∂θv
∂z = 0. In such an atmosphere, an air parcel will

not move. If N2 > 0 (or ∂θv
∂z > 0), a vertically displaced air parcel will start oscillating around its original

position. This atmosphere is called stable. Lastly, if N2 < 0 (or ∂θv
∂z < 0), the atmosphere is convective.

In this case the air parcel will be accelerated away from its original position (Nieuwstadt et al., 2016). In
the context of length scales, the Brunt-Väisälä frequency can be used to construct a stability-dependent
length scale lD,

lD = cn
e1/2

N
. (11)

The mixing length l is equal to lD when l < l∆. Deardorff (1980) takes l = ∆x for l ≥ l∆, whereas
De Roode et al. (2017) uses l = l∆. There is a third length scale lM that Mason and Thomson (1992)
proposed. When we take n = 2 as suggested by Brown et al. (1994), lM is given by

1

l2M
=

1

(κ(z + z0))
2 +

1

(csl∆)
2 . (12)

Here, κ is the von Kármán constant, z0 is the roughness length and cs is the Smagorinsky constant. The
length scale lM applies the stability-dependence of the region near the surface throughout the rest of the
flow. The length scales csl∆ in the flow interior and κ(z+ z0) near the surface are blended. Boutle et al.
(2014) used z0 = 0 and proceeded to incorporate lM into a blended mixing length lblend of a 1D boundary
layer scheme and a 3D Smagorinsky scheme,

lblend = W1Dlbl + (1−W1D)lM . (13)

The function W1D gives a measure of the resolved turbulence (W1D = 1 when the turbulence is unresolved,
W1D = 0 when resolved). The length scale lbl holds for the 1D boundary layer scheme.
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2.4 Subgrid parametrisation in coarse-grained grids

In our study, the subfilter parametrisation specified for DALES in Eqs. (5) to (8) will be applied to
coarse-grained grids that represent NWP grids at grey zone resolutions. Like in DALES, the subgrid
momentum and scalar fluxes in an NWP model are given by subgrid parametrisations. The subgrid
fluxes of the NWP model are diagnosed from high-resolution LES fields. The subgrid fluxes in each LES
grid box are not taken into account when determining the NWP subgrid fluxes, because they are small
everywhere except at the surface (see Fig. 9). Furthermore, we determine the eddy diffusivity Kh for the
NWP subgrid fluxes in our analysis. To obtain the constant ch in Eq. (8), l = ∆x is used for simplicity.
Because the NWP subgrid fluxes and eddy diffusivity are investigated, ∆x is equal to the grid size of the
NWP model. In this report we only show K, so l was not used explicitly.
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3 Experimental Method

3.1 A diagnosis of budget equations at NWP scales from high-resolution LES
fields

In this research, fields from LES simulations are used to probe characteristics of grey zone NWP models.

The subgrid fluxes in a NWP grid box 〈u′′i φ′′〉 as well as the subgrid flux divergences
∂〈u′′

i φ
′′〉

∂xi
are important

to diagnose, because they appear in the governing equation in NWP models that is needed to calculate
changes in velocities and scalars over time (Eq. (14)),

∂〈φ〉
∂t

= −〈ui〉
∂〈φ〉
∂xi

− ∂〈u′′i φ′′〉
∂xi

+ 〈Sφ〉. (14)

The double primes indicate a fluctuation of a quantity relative to the NWP grid box value. The angular
brackets 〈.〉 signify an averaging over an NWP grid box. The change in time of the grid box mean value

of the quantity φ is dictated by the resolved transport −〈ui〉∂〈φ〉∂xi
and the subgrid transport −∂〈u

′′
i φ

′′〉
∂xi

.
We only focus on transport here, additional forcings are denoted by 〈Sφ〉. For the subgrid transport

−∂〈u
′′
i φ

′′〉
∂xi

, a parametrisation for 〈u′′i φ′′〉 is needed to close the equation. It is commonly assumed that
fluxes 〈u′′i φ′′〉 can be represented by a down-gradient diffusion approach (see also Kurowski and Teixeira
(2018)),

〈u′′i φ′′〉 = −Kφ
∂〈φ〉
∂xi

. (15)

The goal of this research is to diagnose the subgrid fluxes and flux divergences, as well as assess whether
the down-gradient diffusion parametrisation may be used in NWP models that operate at grey zone
resolutions.

The procedure used to find the subgrid fluxes and flux divergences is described for a velocity ui in the
horizontal or vertical direction and a scalar φ, like θ, θv or qt. The pixel plots that illustrate each step
depict vertical velocity w and liquid potential temperature θ at a height of z/zi = 0.5. Three-dimensional
fields of ui and φ are obtained from LES. An LES simulation has a domain size of Lx × Ly ×H, where
Lx = Ly is the total domain width and H is the domain height. The grid consists of Nx × Ny × kmax
grid boxes with sizes ∆xLES = 50 m and ∆z = 20 m. ∆xLES is the horizontal grid box width in both
the x- and y-direction. At each LES grid box the three velocity components ui, the liquid water poten-
tial temperature θ, the total, water vapour and cloud liquid water specific humidity qt, qv and ql, the
subfilter-scale turbulent kinetic energy e and scalars like rain or chemical species are known. LES fields
of w and θ are shown as an example in the left columns of Figs. 2 and 3.
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Figure 1: The coarse-graining process. On the left is the original LES mesh with grid width ∆xLES ,
in the middle the mesh is coarse-grained once with ∆xNWP = 2∆xLES and on the right the mesh is
coarse-grained twice with ∆xNWP = 4∆xLES . Image copied from Honnert et al. (2011).

To assess what a field would look like at an arbitrary grid size used by an NWP, denoted by ∆xNWP ,
the LES fields are subjected to coarse-graining. This entails averaging the values inside subdomains with
width ∆xNWP , as illustrated in Fig. 1. The resulting values of ui and φ in the new grid are denoted by
〈ui〉 and 〈φ〉. The coarse-graining process is detailed further in section 3.3.

The pixel plots that are obtained for 〈w〉 and 〈θ〉 after the coarse-graining process are given in the middle
column of Figs. 2 and 3. The same colours are assigned to the same values in the left and middle column.
The coarse-grained plots represent what the measurement field from an NWP model with grid width
∆xNWP would look like. From top to bottom, the coarse-grained fields are given for ∆xNWP = 0.2 km,
∆xNWP = 0.8 km and ∆xNWP = 6.4 km. When the grid size becomes coarser, it can be clearly seen that
less structures are resolved. Also, fluctuations are defined relative to the local average, as u′′i = ui − 〈ui〉
and φ′′ = φ − 〈φ〉. In the right column of Figs. 2 and 3, the fluctuations w′′ and θ′′ are shown for the
three different ∆xNWP . Because all plots in the right column use the same colour-coding, it is evident
that fluctuations from the local average increase with larger ∆xNWP . Fluctuations are especially small
at ∆xNWP = 0.2 km, showing that the fields of 〈w〉 and 〈θ〉 retain most of the details from the w and
θ fields. The differences between w and θ are also visible in the pixel plots. The structures of w are
smaller in scale than those of θ. The result of this is, that at the same ∆xNWP more of the structure in
θ is resolved than in w. At ∆xNWP = 6.4 km, 〈w〉 is almost zero everywhere, whereas 〈θ〉 still has some
structure.
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Figure 2: Examples of the original LES fields w (left column), the coarse-grained fields 〈w〉 (middle
column) and the fluctuation field w′′ = w − 〈w〉 (right column). The coarse-grained fields in the middle
column could be considered as a fictitious horizontal mesh of an NWP, with mesh size ∆xNWP = 0.2 km
for (a), ∆xNWP = 0.8 km for (b) and ∆xNWP = 6.4 km for (c).
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Figure 3: Examples of the original LES fields θ (left column), the coarse-grained fields 〈θ〉 (middle column)
and the fluctuation field θ′′ = θ − 〈θ〉 (right column). The coarse-grained fields in the middle column
could be considered as a fictitious horizontal mesh of an NWP, with mesh size ∆xNWP = 0.2 km for (a),
∆xNWP = 0.8 km for (b) and ∆xNWP = 6.4 km for (c).

In the next step towards finding the subgrid fluxes, the fluctuations u′′i and φ′′ are multiplied to obtain
u′′i φ

′′. In the left column of Fig. 4 is depicted what this multiplication looks like for w and θ fields. The
multiplication field can go through a similar coarse-graining process as the original LES fields, such that
subgrid flux 〈u′′i φ′′〉 can be found. In the right column of Fig. 4, pixel plots are given for 〈w′′θ′′〉. The
same colours are used in the first and second column.
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Figure 4: Multiplication of w′′ and θ′′ yields the field of w′′θ′′ (left column). Applying the same coarse-
graining process that was used for w and θ, gives the subgrid flux field 〈w′′θ′′〉 (right column). The
coarse-grained fields in the second column represent the subgrid fluxes in an NWP model. The mesh size
is ∆xNWP = 0.2 km for (a), ∆xNWP = 0.8 km for (b) and ∆xNWP = 6.4 km for (c).

The terms of the form of 〈u′′i φ′′〉 and
∂〈u′′

i φ
′′〉

∂xi
can be studied by plotting pixel plots (as in Fig. 4) or

quantified by plotting their probability density functions. The vertical heat and moisture fluxes are
diagnosed first, and are subsequently compared to the results of Honnert et al. (2011). Then we will
move on to the horizontal heat and moisture fluxes. In part, we will be able to compare the results for
the horizontal fluxes to a previous study by Kurowski and Teixeira (2018). Flux partitioning, as also
presented by De Roode et al. (2019), Honnert et al. (2011) and Kurowski and Teixeira (2018), can provide
insight into the transition from the entirely subgrid turbulent fluxes at larger grid sizes, to the mostly
resolved fluxes at small grid sizes. In addition, it is possible to diagnose Kφ with 〈u′′i φ′′〉 and ∂φ

∂xi
from

the coarse-grained grids. In the rest of this section, it will be described how the coarse-graining process
was conducted, how the down-gradient diffusion approach was studied as a method of parametrisation,
and finally which LES simulation cases were used.
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3.2 Interpolation of LES fields to full and half levels

In an LES staggered grid, velocities u, v and w and scalars φ sit at different locations. The scalar
quantities are located at the centre of a grid box and the velocity components are located at the face
centres.

Figure 5: A grid box in a staggered grid structure.

It can also be said that the scalars sit
at the full levels and the velocities sit
at the half levels. (see Fig. 5).
Since we want to assess fluxes, we will
need to determine the values of the ve-
locties at the full levels by linear in-
terpolation. Also, to assess the diver-
gence of fluxes it will be convenient to
interpolate the scalar fields to half lev-
els. The interpolations are also impor-
tant for consistency in the coarse-graining
process. When the velocity data points
are shifted with a single interpolation
to the centre of a grid box, they are
given at the same location where tem-
perature, humidity and other scalars are
given. This makes it possible to ma-
nipulate all data points in the same
way.

The interpolation method can be applied in the x-, y- or z-direction and as such to velocities u, v and
w. In the following, the method is explained for the velocity in the x-direction. Firstly, the grid of the
horizontal velocity u is shifted to match the positions of temperature, humidity and other scalars (see
Fig. 6(ab)). The data points are shifted by interpolation as in Eq. (16),

ui,j =
ui− 1

2 ,j
+ ui+ 1

2 ,j

2
. (16)

Eq. (16) yields ui,j at the full levels from velocities ui− 1
2 ,j

and ui+ 1
2 ,j

at two adjacent half levels. The
same procedure can be applied to velocities v and w. To calculate the flux divergences, a version of the
LES grid is needed where all quantities sit at the half levels (see also Fig. 7(ab)). To this end, the scalars
should be interpolated to the half levels as,

φi− 1
2 ,j

=
φi−1,j + φi,j

2
. (17)

This interpolation can also be applied in the y and z-direction. In the remainder of the text we will
assume that all velocities and scalars are known at both full and half levels.

The new data set that is created with Eq. (16), in which all velocity and scalar values are located at the
grid box centres, will be used to diagnose the coarse-grained mean values. An alternative interpolation
method, which uses multiple interpolations to generate a self-similar coarse-grained grid, is described
in the appendix. It was ultimately not used in the analysis, because it proved to be more difficult to
implement than the method used here.

3.3 Definition of the coarse-graining process

Coarse-graining changes an Nx × Ny grid into an Mx ×My grid with larger grid boxes. Each grid box
in the Mx ×My grid consists of nx × ny original grid boxes. Coarse-graining to the nth order means
that nx = ny = 2n (see Fig. 1). The width of the original grid boxes is called ∆xLES , because the
original field comes directly from the LES simulation. After coarse-graining the new grid box has a width
∆xNWP = 2n∆xLES , mimicking the grid size that might be used in a numerical weather prediction
model. The fluxes 〈u′′i φ′′〉 are found for the coarse-grained field at each grid box size.
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Figure 6: Top-down view of an LES grid box (a) before and (b) after shifting the u-velocity to the full
levels. The subdomain averages 〈φ〉 and 〈u〉 are shown in (c), at the centre of the grid boxes.

In the coarse-graining approach the grid the data points are averaged. When nx × ny grid points are
averaged, 〈φ〉 for the larger grid box is given by,

〈φ〉(z) =
1

nxny

nx∑
i=1

ny∑
j=1

φi,j(z). (18)

The subdomain average 〈φ〉 is located at the grid box centre of the coarse-grained grid box and has
indices I and J in the new Mx ×My grid (see Fig. 6(c)). With Eq. (18) scalar averages 〈θ〉 and 〈qt〉 are
determined, as well as the velocities 〈u〉, 〈v〉 and 〈w〉. For every original grid box, velocity fluctuations
u′′, v′′ and w′′ and scalar quantity fluctuations φ′′ can be found with Eq. (19). Velocity fluctuations v′′

and w′′ are calculated with the equation for u′′,

u′′i,j = ui,j − 〈u〉I,J
φ′′i,j = φi,j − 〈φ〉I,J

. (19)
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The fields at the full levels are used to compute the subgid fluxes. The subgrid fluxes 〈u′′φ′′〉 are
covariances as described in De Roode et al. (2019). According to De Roode et al. (2019), the subgrid
flux 〈u′′φ′′〉 is defined as

〈u′′φ′′〉I,J =
1

nxny

nx∑
i=1

ny∑
j=1

(ui,j − 〈u〉I,J)(φi,j − 〈φ〉I,J). (20)

The subgrid flux 〈u′′φ′′〉 is located at the centre of the coarse-grained grid box, just like 〈u〉 and 〈φ〉.
With this method, information from all original data points is used.

3.4 Consequences of coarse-graining budget equations

To obtain the net effect of the subgrid fluxes on the tendencies of the mean, we need to know the flux
divergence. The flux divergence may be determined from the advection term in the scalar equation. We
can write the coarse-grained advection term as,〈∂uφ

∂x

〉
=
∂〈u〉〈φ〉
∂x

+
〈∂u′′φ′′

∂x

〉
adv

+B. (21)

With this advection term it can be derived that the coarse-grained budget equation is given by,

∂〈φ〉
∂t

= −〈ui〉
∂〈φ〉
∂xi

−
〈∂u′′i φ′′

∂xi

〉
−B. (22)

Interestingly, the averaging operator 〈.〉 is outside the differential operator in Eqs. (21) and (22), which
is not how the subgrid transport term is written in the NWP budget equation in Eq. (14). Also, some
contributions B appear in Eq. (22), that are not present in Eq. (14). The full derivation of Eqs. (21)
and (22) and the additional term B is given in appendix B.

The subgrid transport term plus additional terms 〈∂u
′′φ′′

∂x 〉adv +B for every subdomain can be diagnosed

from the difference between 〈∂uφ∂x 〉 and ∂〈u〉〈φ〉
∂x . The quantities needed can be found from the coarse-

grained LES fields. Numerically, 〈∂uφ∂x 〉 can be determined as follows,

〈∂uφ
∂x

〉
I,J

=
1

nxny

nx∑
i=1

ny∑
j=1

ui+ 1
2 ,j
φi+ 1

2 ,j
− ui− 1

2 ,j
φi− 1

2 ,j

∆xLES
, (23)

and ∂〈u〉〈φ〉
∂x I,J

can be found by using the differentation product rule,

∂〈u〉〈φ〉
∂x I,J

= 〈u〉∂〈φ〉
∂x

+ 〈φ〉∂〈u〉
∂x

= 〈u〉I,J
〈φ〉I+1,J − 〈φ〉I−1,J

2∆xNWP
+ 〈φ〉I,J

〈u〉I+1,J − 〈u〉I−1,J

2∆xNWP
.

(24)

If B is small, the difference between 〈∂uφ∂x 〉 and ∂〈u〉〈φ〉
∂x gives the flux divergence. To estimate the magni-

tude of the boundary terms and see if they are indeed small, we can quantify the flux divergence 〈∂u
′′φ′′

∂x 〉
directly from the LES field and compare it to 〈∂u

′′φ′′

∂x 〉adv +B.
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3.5 Direct diagnosis of the flux divergence from LES fields

The flux divergences that are found directly from the LES field are indicated as 〈∂u
′′φ′′

∂x 〉dir. In order to

find the flux divergence from the LES field, first the flux gradient (∂u
′′φ′′

∂x )i,j is obtained at every grid

point and then (∂u
′′φ′′

∂x )i,j is averaged over a subdomain. In order to find the flux gradients at every grid
box, it is convenient to use the velocity and scalar values at the half levels (see also Fig. 5). On every grid
box border u′′φ′′

i− 1
2 ,j

= (ui− 1
2 ,j
− 〈u〉I,J)(φi− 1

2 ,j
− 〈φ〉I,J) is known from the velocities and interpolated

scalar values. Then, to obtain (∂u
′′φ′′

∂x )i,j at the grid box centre i, the difference between u′′φ′′ for i+ 1
2

and for i− 1
2 is used. As is illustrated in Fig. 7, (∂u

′′φ′′

∂x )i,j is then given by,(
∂u′′φ′′

∂x

)
i,j

=
u′′φ′′

i+ 1
2 ,j
− u′′φ′′

i− 1
2 ,j

∆xLES
. (25)

Figure 7: The process used to obtain
(
∂u′′φ′′

∂x

)
i,j

at every grid point.
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The subgrid flux divergence 〈∂u
′′φ′′

∂x 〉dir can be determined from Eq. (25) by averaging over a subdomain.

The averaging process is given in the following steps. First the averaging operator is used on (∂u
′′φ′′

∂x )i,j
(Eq. (18)),

〈∂u′′φ′′
∂x

〉
dir I,J

=
1

nxny

nx∑
i=1

ny∑
j=1

(
∂u′′φ′′

∂x

)
i,j

. (26)

Then it follows from Eq. (25) that,

〈∂u′′φ′′
∂x

〉
dir I,J

=
1

nxny

nx∑
i=1

ny∑
j=1

u′′φ′′
i+ 1

2 ,j
− u′′φ′′

i− 1
2 ,j

∆xLES
. (27)

Because the inner flux terms cancel each other, the only terms left after the summation in the x-direction
are the fluxes on the subdomain borders (at indices 1

2 and nx + 1
2 ). This is illustrated in Fig. 8. Also, it

holds that nx∆xLES = ∆xNWP . So the final result for 〈∂u
′′φ′′

∂x 〉dir I,J is

〈∂u′′φ′′
∂x

〉
dir I,J

=
1

ny

ny∑
j=1

u′′φ′′
nx+ 1

2 ,j
− u′′φ′′1

2 ,j

∆xNWP
. (28)

Figure 8: Determination of the flux divergence for one coarse-grained grid box. Because the u′′φ′′ terms

cancel each other, only the borders of the subdomain contribute to the flux divergence 〈∂u
′′φ′′

∂x 〉dir I,J .

For 〈∂u
′′φ′′

∂x 〉dir I,J , the only u′′φ′′ terms that contribute are located at the borders. The internal dynamics

are not important when diagnosing 〈∂u
′′φ′′

∂x 〉dir I,J , since the interior fluxes do not impact the mean value

of the subdomain. Therefore it is possible to calculate 〈∂u
′′φ′′

∂x 〉dir I,J with just the values of u′′
i− 1

2 ,j
and

φ′′
i− 1

2 ,j
at the borders.

From the flux divergence 〈∂u
′′φ′′

∂x 〉 we can find the net effect of the subgrid fluxes on the tendencies of

the mean of scalars like θ, θv and qt. However, 〈∂u
′′φ′′

∂x 〉 is not the form that is present in the governing
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equation of NWP models that expresses this tendency of the mean (see Eq. (14)). Instead the form
∂〈u′′φ′′〉

∂x is used. If we determine ∂〈u′′φ′′〉
∂x from 〈∂u

′′φ′′

∂x 〉, we take the averaging operator inside of the
differential operator. Then another term Bu′′φ′′ appears (see appendix B),〈∂u′′φ′′

∂x

〉
=
∂〈u′′φ′′〉
∂x

+Bu′′φ′′ . (29)

According to Eq. (29), writing ∂〈u′′φ′′〉
∂x in the NWP budget equation is only justified if Bu′′φ′′ is small. To

estimate the magnitude of Bu′′φ′′ , we find ∂〈u′′φ′′〉
∂x from the LES fields. Using the subgrid fluxes obtained

according to Eq. (20), we obtain the flux divergence ∂〈u′′φ′′〉
∂x I,J

as,

∂〈u′′φ′′〉
∂x I,J

=
〈u′′φ′′〉I+1,J − 〈u′′φ′′〉I−1,J

2∆xNWP
. (30)

Note that for ∂〈u′′φ′′〉
∂x I,J

the subgrid fluxes are averaged over a subdomain before a gradient is taken.

In chapter 4.2, a comparison is given of 〈∂u
′′φ′′

∂x 〉adv, 〈
∂u′′φ′′

∂x 〉dir and ∂〈u′′φ′′〉
∂x , in order to diagnose the

importance of B and Bu′′φ′′ .

3.6 Down-gradient diffusion model

In current NWP models a parametrisation is already utilised to calculate the subgrid fluxes (see Boutle
et al. (2014)). The fluxes are given by a down-gradient diffusion approach based on K-theory and can
be given as follows,

〈u′′i φ′′〉 = −Kh,i
∂〈φ〉
∂xi

. (31)

Here 〈u′′i φ′′〉 is the subgrid flux, Kh,i is eddy diffusivity in direction i, and φ is the average scalar over
the grid box. Note that this parametrisation scheme is similar to that used in LES (see Eq. (8)). The
eddy diffusivity K can be found with the following closure hypothesis,

K = c
√
el. (32)

The constant c is an undetermined constant, e = 1
2 (〈u′′2〉+ 〈v′′2〉+ 〈w′′2〉) is the subgrid turbulent kinetic

energy and l is the mixing length. For a CBL, l is typically taken to represent the dominant eddy size.
Following Deardorff (1980), the length scale is taken equal to the size of the grid for which the subgrid
fluxes are calculated. In this case we diagnose the subgrid fluxes and eddy diffusivity in the NWP model,
so l = ∆xNWP .

The coarse-graining process generates a grid of all quantities at the full levels. The left-hand side of Eq.
(31) can be calculated with Eq. (20). The right-hand side can be obtained if the average temperature

gradient is known. The average vertical temperature gradient ∂〈φ〉
∂z and the average horizontal temperature

gradient ∂〈φ〉
∂x can be found with Eq. (33), using the average temperature 〈φ〉 from Eq. (18),

∂〈φ〉
∂z I,J,k

=
〈φ〉I,J,k+1 − 〈φ〉I,J,k−1

2∆z

∂〈φ〉
∂x I,J,k

=
〈φ〉I+1,J,k − 〈φ〉I−1,J,k

2∆xNWP
.

(33)

To get a more specific idea of the eddy diffusivity Kh, we look at the case of the vertical and horizontal
moisture flux 〈w′′q′′t 〉 and 〈u′′q′′t 〉. The vertical moisture flux has a strictly positive vertical profile below
the inversion, which will make it easier to interpret. We define 〈Kqt,z〉 and 〈Kqt,x〉 for each subdomain
as,
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〈Kqt,z〉 = − 〈w
′′q′′t 〉

∂〈qt〉/∂z

〈Kqt,x〉 = − 〈u
′′q′′t 〉

∂〈qt〉/∂x
.

(34)

We are interested in the dependency of Kqt,z and Kqt,x on z/zi and ∆xNWP /zi. Note that current
parametrisations assume isotropy for K. We will assess whether an isotropic assumption is still valid at
NWP grid sizes. In chapter 4.3, the analysis method for the K-diffusion is elaborated on and the results
are shown.

3.7 Simulation cases

Two different simulation cases are analysed to probe the influence of the input parameters on the results.
We will investigate two different CBL cases, based on the CBL case in De Roode et al. (2004). The
first simulation, which we will call case CBL, provides a convective boundary layer with large-scale
fluctuations. This will allow us to look at well-developed heat and moisture fluxes. In Fig. 9(a) the
vertical profiles of the resolved and subgrid fluxes of heat, moisture and buoyancy are shown, determined
from LES for case CBL. Because of the large humidity flux at the surface, the buoyancy flux w′θ′v is much
different from the heat flux w′θ′. The fluxes w′θ′, w′q′t and w′θ′v are interconnected as

w′θ′v = w′θ′ +

(
Rv
Rd
− 1

)
θ w′q′t. (35)

Here, Rv and Rd are the specific gas constants for water vapour and dry air, respectively. The value for
Rv

Rd
− 1 is often approximated to 0.61. It will be interesting to study w′θ′v, because the fluctuations in θv

are smaller than those in θ and qt. This was previously shown in De Roode et al. (2004). Furthermore,
w′θ′v will show how the heat fluxes would behave in a dry CBL, since in a dry CBL it holds that w′q′t = 0
and so w′θ′ = w′θ′v. As such, we do not need to simulate a dry CBL separately.

Figure 9: Slab-average vertical flux profiles of the LES resolved (solid lines) and subgrid (dashed lines)
contributions to the heat flux, buoyancy flux and moisture flux, averaged over the last 60 s of hour 8. In
(a), flux profiles are given for case CBL and in (b) they are given for CBLws. The height is normalised by
the boundary layer height zi and the fluxes are normalised by the surface values, which have been given
a subscript 0.

The second simulation, case CBLws, investigates the impact of wind shear. Case CBL does not have a
strongly developed momentum flux u′w′, because the wind speeds are relatively low. In order to increase
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the momentum flux, we need to apply a strong wind shear in the boundary layer. Therefore, in case
CBLws the wind speed in the boundary layer and the geostrophic wind in the x-direction are increased
from 1.0 m/s to 15.0 m/s. It is also necessary to introduce subsidence, so that the boundary does not
grow into the sponge layer during the simulation. The divergence D, which is a measure for the horizontal
air displacement due to subsidence, is set to 3× 10−5 s−1. In Fig. 9(b), the height profiles of the vertical
heat, moisture and buoyancy flux are given for case CBLws. Compared to case CBL, the inversion is
located at about the same height for case CBLws.

The input parameters for case CBL and case CBLws are given in Tab. 1 and include the surface pressure,
the wind speeds, the surface fluxes, the divergence, the runtime of the simulation and the statistical
intervals. The input height profiles for potential temperature and humidity, shown in Fig. 10, are the
same for both simulations. The domain size of the simulations is 12.8 × 12.8 × 2.56 km, with ∆xLES =
50 m and ∆z = 20 m. The horizontal domain size is denoted by Lx.

Table 1: Input parameters of simulation cases CBL and CBLws. Surface pressure ps, the geostrophic
winds Ugeo and Vgeo, horizontal wind speeds U and V , surface fluxes for heat and moisture 〈w′θ′〉0 and
〈w′q′t〉0, and divergence D are indicated below. The simulation runs for 10 hours in every case and returns
statistics every minute.

Quantity Units Case CBL Case CBLws

ps hPa 1040 1040
Ugeo m/s 1.0 15.0
Vgeo m/s 0.0 0.0
U m/s 1.0 15.0
V m/s 0.0 0.0

〈w′θ′l〉0 K m/s 0.025 0.025
〈w′q′t〉0 kg/kg m/s 1.366× 10−4 1.366× 10−4

Div s−1 0.0 3× 10−5

runtime h 10 10
statistical intervals s 60 60

Figure 10: Initial vertical profiles for θ and qt for both simulation cases.

Fig. 9 also gives the LES subgrid fluxes for heat, moisture and buoyancy for both simulation cases. The
LES subgrid fluxes in case CBL are clearly very small everywhere in the boundary layer, except at the
surface and in the entrainment zone. For case CBLws, very small values of the subgrid flux are only
found between heights z/zi = 0.1 and z/zi = 0.4. To understand how the LES resolved and subgrid
fluxes relate to the NWP subgrid fluxes we want to study, we look at how resolved, subgrid and total
turbulent fluxes are connected in LES and NWP models.
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In general, the total slab-averaged flux u′iφ
′ of a quantity is given by the sum of its resolved and subgrid

parts at a particular grid size, which are denoted by u′iφ
′
res and u′iφ

′
sub respectively (see also Honnert

et al. (2011)). So for the resolved and subgrid fluxes at the LES and NWP grid sizes we can write,

u′iφ
′ = u′iφ

′LES
res + u′iφ

′LES
sub = u′iφ

′NWP

res + u′iφ
′NWP

sub . (36)

The superscript LES indicates that the fluxes are determined for grid size ∆xLES and NWP indicates
that they are determined for grid size ∆xNWP . In this study, we are interested in the subgrid fluxes of
NWP models. The resolved and subgrid fluxes at the NWP grid size are determined from the resolved
velocities and scalars in the LES fields. In the LES grid the total flux is made up of the LES resolved flux
and the subfilter-scale flux. We do not include the LES subfilter flux, so the LES resolved flux represents
the total slab-averaged flux. Then the resolved and subgrid fluxes for the NWP model sum to the LES
resolved flux and as such to the total slab-averaged flux. Excluding LES sub-filter fluxes is reasonable,
because they are small everywhere in the boundary layer, except at the surface and the entrainment zone.
This is visible in Fig. 9 and was also shown previously by Nieuwstadt et al. (1993). However, for case
CBLws, the LES subgrid fluxes are significant in most of the boundary layer. This should be taken into
account when interpreting the results for NWP resolved and subgrid fluxes in case CBLws.

21



4 Results and Discussion

4.1 Vertical flux behaviour

Vertical fluxes are studied to assess the validity of the analysis method used. If the results for the vertical
fluxes agree with the literature, we can confidently apply the same methodology to the horizontal fluxes
to obtain new results. For the vertical fluxes, only the results for case CBL are shown, because the results
for case CBL and case CBLws are very similar for the heat fluxes, moisture fluxes and buoyancy fluxes
that were studied. Firstly, pixel plots of the subgrid and resolved fluxes visualise the transition from
entirely resolved to entirely subgrid fluxes in the grey zone. In Fig. 11 the vertical resolved and subgrid
heat fluxes are given at z/zi = 0.5. Similar results were obtained for the moisture fluxes (not shown).
At small ∆xNWP turbulence is largely resolved, so the resolved flux shows detailed structures as well.
These disappear at about ∆xNWP = 1.6 km, which is about as large as the boundary layer height (zi =
1200 m at t = 8 h). At this grid size, even the largest eddies at the scale of the boundary layer cannot be
resolved any more. The subgrid flux is small at first and then starts to take over some of the structures
from the resolved flux. For very large ∆xNWP , the subgrid flux converges to -0.02 Kms−1.

Figure 11: (a) Pixel plots of the vertical resolved heat flux w′′θ′′res = (〈w〉 − w)(〈θ〉 − θ) and (b) pixel
plots of the vertical subgrid heat flux 〈w′′θ′′〉, using instantaneous values at t = 8 h, for z/zi = 0.5 and
case CBL.

The transition from resolved to subgrid turbulent fluxes can also be visualised with flux partitioning, as
shown by for example Honnert et al. (2011), Shin and Hong (2013) and Kurowski and Teixeira (2018).
Partition plots visualise the subgrid and resolved parts of the turbulent fluxes. The subgrid and resolved
parts averaged over the entire LES domain are defined as in De Roode et al. (2019),

φ′ψ′res =
1

MxMy

Mx∑
k=1

My∑
l=1

(〈φ〉kl − φ)(〈ψ〉kl − ψ) (37)

φ′ψ′sub =
1

MxMy

Mx∑
k=1

My∑
l=1

〈φ′′ψ′′〉kl. (38)

In Fig. 12, the slab-averaged and normalised values of the resolved and subgrid heat flux divided by the
total flux, w′θ′res/w′θ′ and w′θ′sub/w′θ′, are plotted against ∆xNWP /zi. Note that the total flux w′θ′ is
equal to the LES resolved flux, because the LES subgrid fluxes are neglected (see also chapter 3.7). Fig.
12 shows that at small ∆xNWP the turbulence is entirely resolved, and w′θ′res/w′θ′ = 1. This is reflected
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in the pixel plot of the resolved flux at ∆xNWP = 50 m in Fig. 11, where the resolved flux has detailed
structures. After ∆xNWP /zi = 0.8 the subgrid contribution to the turbulent flux becomes larger than
the resolved. In this intermediate range between the LES and NWP limit, the pixel plots show how the
structures in the resolved and subgrid fluxes change.

Figure 12: Flux partitioning for the heat flux determined
from instantaneous values at t = 8 h, for z/zi = 0.5 and
case CBL.

Finally, the turbulence is entirely subgrid
as w′θ′sub/w′θ′ = 1 and w′θ′res/w′θ′ =
0, when ∆xNWP is equal to the domain
size. Indeed, the pixel plots show that
the resolved flux becomes 0 for ∆xNWP /zi
= 10.6. In Honnert et al. (2011), Shin
and Hong (2013) and Kurowski and Teix-
eira (2018), we also see that the turbu-
lence is entirely subgrid for ∆xNWP /zi ∼
10.

The dependency of the variability of the sub-
grid fluxes on NWP grid size can also be vi-
sualised in a probability density function, or
PDF (Fig. 13 (a)). The PDFs are plotted
for different values of ∆xNWP . A PDF is nor-
malised by the total amount of data points, so
that the integral over the PDF equals unity.
According to Fig. 13(a), the PDF is nar-
rowest for small ∆xNWP . This makes sense,
because for small ∆xNWP the values of the
original field and the coarse-grained field do
not differ much and thus the fluctuations are small. The distribution becomes broader for larger ∆xNWP ,
as the original LES values differ more from the subdomain mean values in the coarse-grained field and
so the fluctuations increase. If the fluctuations increase, so do the subgrid fluxes. As in the pixel plots,
it evident in the PDFs that the vertical flux reduces to a single value for ∆xNWP = Lx.

Figure 13: Distribution of (a) the vertical subgrid heat fluxes 〈w′′θ′′〉 and (b) flux divergences −∂〈w
′′θ′′〉
∂z

for z/zi = 0.5 and case CBL. The distributions are created from multiple LES fields sampled every 5
minutes between t = 7 h and t = 8 h. The horizontal axis is limited from -0.05 to 0.05 Kms−1 in (a) and
from -1 to 1 Kh−1 in (b).

In addition, Fig. 13(b) shows how the PDFs for the vertical flux divergence ∂〈w′′φ′′〉
∂z depend on NWP

grid size. The distribution for ∂〈w′′φ′′〉
∂z is narrow around zero for small ∆xNWP and spreads out for larger

values. This makes sense, because the fluctuations from the local subdomain average become larger as
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∆xNWP increases. The value of ∂〈w′′θ′′〉
∂z at ∆xNWP = Lx is 0.3 Kh−1. The width of the distribution

at ∆xNWP = 1.6 km is about 1 Kh−1, which indicates the order of magnitude with which the vertical

subgrid transport influences the tendencies of the mean. Also, note that ∂〈w′′θ′′〉
∂z is equal to 〈∂w

′′θ′′

∂z 〉,
while ∂〈u′′θ′′〉

∂x and 〈∂u
′′θ′′

∂x 〉 are not the same (see appendix B for details).

The subgrid fluxes can be slab-averaged to obtain w′θ′sub, w′θ′vsub, w
′q′tsub and w′w′sub, following Eq.

(38). In Fig. 14 the slab-averaged subgrid fluxes for θ, qt and θv are plotted against z/zi. The transition
from resolved to subgrid turbulent fluxes is clearly visible, as w′θ′sub, w′q′tsub and w′θ′vsub are zero for
∆xNWP = ∆xLES and follow the profile for the total slab-averaged flux for ∆xNWP = Lx (black line).
So, at ∆xNWP = Lx the subgrid fluxes account for all turbulent transport. The difference between the
fluxes for θ, θv and qt is also apparent. The total vertical fluxes for θ and θv switch sign at z/zi = 0.27
and z/zi = 0.78, respectively. These critical values of z/zi will be denoted by (z/zi)c. The fluxes of

θ and θv switch sign at that particular (z/zi)c, because the ∂θ
∂z < 0 for z/zi < (z/zi)c and ∂θ

∂z > 0 for
z/zi > (z/zi)c. In contrast, the total vertical fluxes for qt are strictly positive in the boundary layer,
because ∂qt

∂z < 0 everywhere in the boundary layer. This difference in the total vertical flux profiles
continues in the subgrid vertical flux profiles (coloured lines in Fig. 16). The subgrid moisture flux is
strictly positive in the boundary layer for every value of ∆xNWP . The height profile of the subgrid fluxes
of θ and θv switch sign like the total vertical flux profile does, but the profiles cross zero at larger z/zi.
This can account for some interesting phenomena in the flux partitioning.

Figure 14: Height profiles for the vertical subgrid (a) heat fluxes, (b) moisture fluxes and (c) buoyancy
fluxes for different ∆xNWP , determined from instantaneous values at t = 8 h in case CBL.
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In order to compare the vertical turbulent fluxes w′θ′, w′θ′v, w′q′t and w′w′, flux partitioning of the subgrid
fluxes is shown in Fig. 15 for z/zi = 0.1-0.9. These plots elaborate on the plot in Fig. 12 by comparing the
subgrid flux partitioning for heat fluxes, moisture fluxes, buoyancy fluxes and vertical velocity variance in
one figure. The x-axis has a logarithmic scale, to better visualise the transition. A number of behaviours
are notable. Firstly, the shape of the flux partitioning is different for z/zi = 0.1-0.2 than at any other
height. At small ∆xNWP , the graph looks linear, which is a result that Honnert et al. (2011) also found
for the heat flux close to the surface. Their explanation was that so close to the surface, the function they
used to fit the flux partitioning data was no longer independent of z/zi. Secondly, the point where the
resolved and subgrid parts of the total flux are equal for w′q′t and w′w′, shifts to larger ∆xNWP /zi when
z/zi increases. At the top of the boundary layer this point shifts back again. This height dependence of
the flux partitioning is shown in Fig. 16. The flux partitioning of w′θ′ and w′θ′v does not show such a
clear trend. For the range z/zi = 0.1-0.4, w′θ′sub/w′θ′ reaches values below 0 and above 1. In calculating
the ratio of the subgrid flux and the total flux with Eq. (38), we expect that the ratio gives a value
between 0 and 1, because the subgrid contribution is a part of the total flux. The appearance of flux
partitioning values below 0 and above 1 can be explained by the vertical subgrid flux profiles in Fig.
14(a). There, it can be seen that in the range z/zi = 0.1-0.4, the mean subgrid fluxes w′θ′sub and total
flux w′θ′ have a different sign or the fluxes do have the same sign, but the subgrid contribution is larger
than the resolved flux. In Fig. 14(a), this happens for ∆xNWP = 0.1 km and 0.4 km. Furthermore, it
can be seen in Fig. 15 that the ratio w′θ′vsub/w

′θ′v drops below 0 around z/zi = 0.8. Fig. 14(c) shows
that w′θ′vsub has a different sign than w′θ′v at around z/zi = 0.8. In general, the partition goes outside
of the range between 0 and 1 when the vertical profile of the total flux approaches 0. Also, it is visible
from Fig. 15 that the flux partitioning of w′θ′, w′q′t and w′θ′v is not the same. The point where subgrid
and resolved contributions to the turbulent flux are equal, is smallest for the buoyancy flux. Thus the
turbulent structures of θv have the smallest scale, following De Roode et al. (2004). Because θv and θ are
equal in a dry CBL, the buoyancy flux indicates that the structures of θ would be smaller in a dry CBL
than in a CBL with moisture. Finally, the partitioning for heat and moisture fluxes is similar, but not
entirely identical. Note that currently the same parametrisatons are used for all scalars in the grey zone.
Based on the difference in grey zone transition, it might be necessary to parametrise heat and moisture
fluxes separately.
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Figure 15: Subgrid flux partitioning of w′θ′, w′θ′v, w′q′t and w′w′ at z/zi = 0.1-0.9, detemined from
instantaneous values at t = 8 h for case CBL.
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Figure 16: Height dependence of subgrid flux partitioning of (a) w′θ′, (b) w′θ′v, (c) w′q′t and (d) w′w′,
determined from instantaneous values at t = 8 h for case CBL.

It is clear from Fig. 16 (a) that the flux partitioning varies with height. In characterising the grey zone
transition of these fluxes it is interesting to take a closer look at the scale Leq = ∆xNWP /zi where the
resolved and subgrid fluxes are equal. In Fig. 16, Leq is the point where a graph reaches w′φ′sub/w

′φ′

= 0.5. Leq is plotted against z/zi in the boundary layer in Fig. 17. The profile of Leq for the moisture
flux slightly increases up until the middle of the boundary layer and then slightly decreases again. This
means that the structures in qt are larger in the middle of the boundary layer than at the surface and
the inversion. The profile of Leq for the heat flux gives a completely different picture. A discontinuity
occurs for z/zi = 0.27, which is also where the vertical profile of w′θ′ switches sign. In a similar plot
by Honnert et al. (2011) Leq jumps to a higher value for a z/zi of about 0.8. This is also the height at
which the potential temperature flux switches sign in their simulation case. In both our case and the case
of Honnert et al. (2011), the jump to high Leq is caused by the phenomenon that the subgrid and total
fluxes have a different sign around the z/zi where the flux profiles cross zero. There, the partitioning
goes to negative values first and then gets to w′θ′sub/w′θ′ = 0.5 at a much higher ∆xNWP than it would
otherwise (see Fig. 16(a)). Because of the discontinuity, any conclusion about the size of the structures
of θ cannot be drawn.
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Figure 17: Height profiles of the ∆xNWP /zi for which resolved and subgrid contributions to the total
flux are equal. The results for fluxes w′θ′ and w′q′t are given for case CBL in (a), and the similar figure
from Honnert et al. (2011) that depicts these profiles for the TKE, variances of θ and qt and heat and
moisture fluxes, is given in (b).

All in all, the vertical fluxes can be diagnosed well by using the coarse-graining process. The transition
from entirely resolved turbulent fluxes to entirely subgrid fluxes can be clearly seen in the pixel plots,
flux partitioning and vertical subgrid flux profiles. In chapter 4.2 the results for horizontal and vertical
fluxes will be compared.
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4.2 Horizontal flux behaviour

4.2.1 Height dependency of slab-averaged horizontal fluxes

In the following, the horizontal fluxes from our analysis will be studied and compared to the vertical
fluxes. First, the height profiles of the total horizontal heat, moisture and buoyancy fluxes are given for
case CBL and case CBLws in Fig. 18. The total fluxes are the LES resolved fluxes, following Eq. (36).
The horizontal fluxes have distinctly different height profiles than the vertical fluxes, of which the LES
resolved and subgrid fluxes were given in Fig. 9. Let us first focus on case CBL, which has little wind
shear (Fig. 18(a)). The flux height profiles for u′θ′, u′q′t and u′θ′v switch sign multiple times in the profile.
The horizontal fluxes are the largest at the surface and especially at the top of the boundary layer. At the
inversion the horizontal fluxes have the same order of magnitude as the vertical fluxes at their extremes.
The horizontal fluxes are large at the top of the boundary layer, because the inversion causes large
fluctuations of temperature and humidity. The horizontal heat and buoyancy fluxes in the entrainment
zone are positive and the horizontal moisture fluxes are negative. In time, the horizontal fluxes in the
entrainment zone become smaller for heat and buoyancy and larger (more negative) for moisture. At the
bottom of the boundary layer the increase in horizontal flux magnitude is caused by the surface boundary
conditions. In the middle of the the boundary layer, the horizontal fluxes are significantly smaller than
at the surface and in the entrainment zone. In the bulk of the boundary layer, the height profile of
the horizontal fluxes for all scalars changes over time. The magnitude of the horizontal fluxes does not
clearly increase or decrease over time. The total horizontal heat flux in the middle of the boundary layer
is about two orders of magnitude smaller than the vertical heat and moisture flux. For the total horizontal
moisture and buoyancy flux the difference is smaller, about one order of magnitude. This shows that the
slab-averaged horizontal fluxes are of significant magnitude in case CBL, even though they are smaller
than the slab-averaged vertical fluxes.

Figure 18: Slab-averaged horizontal total flux profiles for heat, moisture and buoyancy, determined from
instantaneous values at t = 8 h. The results for case CBL are given in (a) and those for case CBLws are
given in (b). The horizontal fluxes have been normalised with the surface values for the vertical fluxes,
indicated as w′φ′0.

Now we consider case CBLws in Fig. 18(b). In case CBLws, the wind shear increases the momentum flux
u′w′ greatly with respect to case CBL. The increase in momentum flux also makes the horizontal fluxes
larger. It is immediately clear that the wind shear has increased the horizontal fluxes drastically. The
peaks at the surface and at the inversion, that were visible in the profiles for case CBL, have broadened
and penetrated into the bulk of the boundary layer. The inversion is located at about the same height
as for case CBL. Over time the horizontal subgrid fluxes for case CBLws tend to become slightly smaller
in the bulk of the boundary layer and larger at the surface. The magnitude of the horizontal fluxes for
case CBLws is of the same order as the magnitude of the vertical fluxes in both simulations. In fact,
the maximum values of the horizontal fluxes are between twice and four times as large as the maximum
values for the vertical.
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4.2.2 Scale dependency of horizontal subgrid fluxes

Previously we have seen the height dependency of the total horizontal fluxes and compared it to the
vertical fluxes. When we now look at the subgrid fluxes, we can study how the height profiles differ
for different ∆xNWP . The vertical profiles of the horizontal subgrid fluxes u′θ′sub, u′q′tsub and u′θ′vsub,
defined as in Eq. (38), are given in Fig. 19 for case CBL and in Fig. 20 for case CBLws.

Figure 19: Slab-averaged horizontal subgrid flux profiles for (a) heat, (b) moisture and (c) buoyancy for
different ∆xNWP , detemined from instantaneous values at t = 8 h in case CBL.

In Fig. 19, it can be seen that for case CBL, at the surface and the entrainment zone, the height profiles
follow the shape of the total flux (black line) and the magnitude of the horizontal subgrid fluxes decreases
steadily for smaller ∆xNWP . In the bulk of the boundary layer, the horizontal subgrid flux magnitude
does not decrease so clearly. Although the horizontal subgrid fluxes tend to have smaller magnitudes as
∆xNWP decreases, there are heights at which the horizontal subgrid fluxes increase in magnitude with
respect to the horizontal subgrid fluxes at larger ∆xNWP .

In case CBLws, shown in Fig. 20, the height profiles of horizontal subgrid fluxes follow the shape of
the height profile of the total flux (black line) throughout the entire boundary layer. The magnitude
of the horizontal subgrid fluxes clearly decreases for smaller ∆xNWP . In contrast with case CBL, case
CBLws does not have certain heights in the bulk of the boundary layer where the horizontal subgrid
fluxes increase in magnitude relative to the horizontal subgrid fluxes at a larger ∆xNWP .
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Figure 20: Slab-averaged vertical subgrid flux profiles for (a) heat, (b) moisture and (c) buoyancy for
different ∆xNWP , determined from instantaneous values at t = 8 h in case CBLws.

Although the height profiles of the slab-averaged horizontal subgrid fluxes give a good impression of their
behaviour across the boundary layer, we would like to study the scale dependency of the horizontal fluxes
in more detail. To this end, we consider the horizontal fluxes at z/zi = 0.5 for different ∆xNWP . As for
the vertical fluxes, the scale dependency of the horizontal fluxes can be visualised in pixel plots. In Fig.
21 the horizontal resolved and subgrid heat flux in case CBL are given for different ∆xNWP . There we
can see that the horizontal resolved flux has a similar behaviour as the vertical flux. The subgrid flux
is small at first and then begins to show some structures, just like in the vertical. However, as ∆xNWP

approaches the domain size, the subgrid flux reduces to a much smaller value than for the vertical. For
case CBLws, shown in Fig. 22, it appears that the subgrid flux does go to significant positive value at
∆xNWP = Lx.
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Figure 21: (a) Pixel plots of the horizontal resolved heat flux u′′θ′′res = (〈u〉 − u)(〈θ〉 − θ) and (b) pixel
plots of the horizontal subgrid heat flux 〈u′′θ′′〉, determined from instantaneous values at t = 8 h, z/zi
= 0.5 and case CBL.

Figure 22: (a) Pixel plots of the horizontal resolved heat flux u′′θ′′res = (〈u〉 − u)(〈θ〉 − θ) and (b) pixel
plots of the horizontal subgrid heat flux 〈u′′θ′′〉, determined from instantaneous values at t = 8 h, z/zi
= 0.5 and case CBLws.

The probability density functions of 〈u′′θ′′〉 for case CBL, shown in Fig. 23(a), reflect the pixel plots.
The PDF for the horizontal fluxes is narrow for small ∆xNWP and then spreads out. In contrast with
the vertical flux distribution, which converged to -0.02 Kms−1, the PDF for the horizontal subgrid fluxes
becomes a narrow peak around a very small value of 1.4× 10−4 Kms−1 at ∆xNWP = Lx. Indeed, the
slab-averaged values of the horizontal heat flux are two orders of magnitude smaller than the vertical
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heat fluxes, which was already visible in Fig. 19. However, the width of the PDFs is almost the same
for horizontal and vertical fluxes. The PDFs for case CBLws are given in Fig. 23(b). In case CBLws,
the PDF becomes a narrow peak at ∆xNWP = Lx around a value of 0.05 Kms−1, which is two orders
of magnitude larger than the value for case CBL. This proves that the higher wind speed in case CBLws

siqnificantly increases the magnitude of the horizontal subgrid fluxes.

Figure 23: Distribution of the horizontal heat fluxes 〈u′′θ′′〉 for z/zi = 0.5. In (a) the fluxes are given
for case CBL and in (b) they are given for case CBLws. The distributions are created from multiple LES
fields sampled every 5 minutes between t = 7 h and t = 8 h. The horizontal axis has been limited from
-0.02 to 0.02 Kms−1 in (a) and from -0.2 to 0.2 Kms−1 in (b).

Now that the height and scale dependencies of the horizontal subgrid fluxes have been discussed, we
compare the vertical and horizontal subgrid fluxes more explicitly. The magnitudes of vertical and hori-
zontal subgrid fluxes for heat and moisture in case CBL are compared in Fig. 24(a). The vertical subgrid
fluxes show a steady increase across the scales, which levels off at ∆xNWP = 3.2 km. The magnitude
of horizontal subgrid fluxes overall becomes larger for increasing grid sizes, but not as rapidly as the
magnitude of the vertical subgrid fluxes. At some grid sizes, the magnitude of the horizontal fluxes
decreases relative to magnitude at a smaller grid size. At small ∆xNWP , the horizontal subgrid fluxes
are only half an order of magnitude smaller than the vertical subgrid fluxes. As ∆xNWP increases, the
magnitude difference increases to two orders of magnitude. In case CBLws, shown in Fig. 24(b), a more
rapid increase in magnitude can be seen for the horizontal subgrid fluxes. The scale dependency of the
magnitude of the horizontal subgrid fluxes for case CBLws is comparable to that of the vertical subgrid
fluxes. The magnitude of the horizontal subgrid fluxes even becomes larger than the magnitude of the
vertical subgrid fluxes at large grid sizes. The vertical subgrid fluxes are also slightly larger in case
CBLws than in case CBL. The slight increase in vertical subgrid flux magnitude and the large increase in
horizontal subgrid flux magnitude compared to case CBL, are a direct result from the high momentum
flux in CBLws. The results in Fig. 24 are in line with the height profiles of the slab-averaged vertical
and horizontal subgrid fluxes seen earlier in in Figs. 14, 19 and 20. The height profiles also show that
the magnitude of the vertical fluxes increases as ∆xNWP becomes larger, consistent with Fig. 24(a).
The magnitude of the horizontal fluxes in case CBL does not increase very clearly in Fig. 24(a), which
is also visible in the height profiles in Fig. 19. In the height profiles we can also see that for case CBL
the vertical subgrid fluxes are up to two orders of magnitude larger than the horizontal subgrid fluxes.
At z/zi = 0.5, the horizontal and vertical subgrid fluxes have about the same magnitude in case CBLws,
which is also apparent in Fig. 24. That the magnitude of the horizontal subgrid fluxes in case CBLws

increases rapidly with grid size can also be seen in Fig. 20. All in all, the height profiles and the plots of
the slab-averaged fluxes against different grid sizes are consistent.
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According to Eq. (31), the subgrid fluxes in an NWP might be predicted following a down-gradient
diffusion approach. In order to compare the magnitude of the subgrid fluxes with that of the scalar
gradients, the slab-average of the absolute value of the potential temperature gradient is given in Fig. 25
for the horizontal and vertical direction in case CBL and case CBLws. It makes sense to take the absolute
value here, because the values of the potential temperature gradient span several orders of magnitude
and should be plotted on a logarithmic scale for clarity.

Figure 24: The absolute value of the vertical and horizontal heat fluxes normalised by the vertical surface
heat flux for different ∆xNWP , determined from instantaneous values at t = 8 h, for z/zi = 0.5. The
surface values are indicated with a subscript 0. The results for case CBL are given in (a), those for case
CBLws in (b).

Figure 25: The slab-average of the absolute values for the vertical and horizontal potential temperature
gradients for different ∆xNWP , determined from instantaneous values at t = 8 h, for z/zi = 0.5. The
results for case CBL are given in (a), those for case CBLws in (b). At ∆xNWP = 1

2Lx and ∆xNWP = Lx,
the horizontal potential temperature gradients are zero and therefore cannot be shown on the vertical
logarithmic axis.
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For case CBL, the vertical temperature gradient drops off slightly and goes to an asymptotic value,
whereas for case CBLws, the vertical temperature gradient is almost constant for every value of ∆xNWP .
As the vertical potential temperature gradient stays within the same order of magnitude for all ∆xNWP ,
and the vertical subgrid fluxes increase with grid size in both cases (see Fig. 24), the eddy diffusivity for
vertical transport Kz must increase with grid size as well. In Fig. 25, we can also see that the magnitude
of the horizontal potential temperature gradient decreases rapidly with grid size for both cases. The mag-
nitude of the horizontal potential temperature gradient decreases, while the magnitude of the horizontal
heat fluxes increases. From these results it cannot be found directly with Eq. (31) how Kx depends on
the grid size. Also, for ∆xNWP = 6.4 km and ∆xNWP = 12.8 km, the horizontal potential temperature
gradient is zero, while the horizontal subgrid fluxes are nonzero. Therefore the eddy diffusivity Kx will
be undefined at those grid sizes. We will analyse the grid dependency of Kz and Kx in further detail in
chapter 4.3.

Figure 26: Slab-averaged subgrid vertical and hor-
izontal fluxes for z/zi = 0.1-0.5 normalised by the
surface heat flux. Image copied from Kurowski and
Teixeira (2018).

Kurowski and Teixeira (2018) give a similar plot
to Fig. 24, where they obtain the vertical and
horizontal heat fluxes from their LES parametri-
sation in simulations that use a range of resolu-
tions from ∆x = 0.05 km to ∆x = 100 km (see
Fig. 26). They conclude that the vertical subgrid
fluxes slowly increase with grid size and reach an
asymptotic value at ∆x = 10 km. Albeit that the
asymptotic value is reached at a lower grid size,
we find the same behaviour for the vertical sub-
grid fluxes in our results. In Fig. 26, it can also
be seen that the horizontal subgrid fluxes slightly
decrease and then rapidly decrease beyond ∆x = 4
km. In addition, they show that the potential tem-
perature gradient decreases with increasing grid
size and the eddy diffusivity K increases. They
assume, as do we, that the horizontal flux, poten-
tial temperature gradient and eddy diffusivity are
interconnected via Eq. (31). The eddy diffusivity
they use is the same for the vertical and horizon-
tal direction. Kurowski and Teixeira (2018) argue
that up until ∆xNWP = 4 km, the increase in eddy
diffusivity balances out the decrease in potential
temperature gradient, keeping the horizontal heat
fluxes at a stable level. However, when the eddy diffusivity levels off, the temperature gradient still
decreases, so the horizontal fluxes collapse to very low values. In our results, we do not see such a steep
magnitude drop at large ∆xNWP . In fact, the horizontal subgrid fluxes show an increase in magnitude
as the grid sizes become larger. It can be concluded that our diagnosis of the horizontal subgrid fluxes
produces profoundly different results than the parametrisation of Kurowski and Teixeira (2018).
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4.2.3 Comparison of flux divergences and their calculation methods

To assess the contribution of horizontal subgrid fluxes to the tendencies of the mean in NWP models,
we look at the horizontal flux divergences. The horizontal flux divergences have been obtained using
three different calculation methods, specified in chapter 3.3. Depending on the calculation method used,

the horizontal flux divergences are denoted by 〈∂u
′′θ′′

∂x 〉adv, 〈
∂u′′θ′′

∂x 〉dir or ∂〈u′′θ′′〉
∂x . For convenience we

summarise the calculation methods in the following. Firstly, the flux divergence can be found from the
advection term in the scalar equation and is then denoted by 〈∂u

′′θ′′

∂x 〉adv. The flux divergence 〈∂u
′′θ′′

∂x 〉adv
plus an additional term B can be diagnosed from 〈∂uφ∂x 〉 and ∂〈u〉〈φ〉

∂x ,〈∂u′′φ′′
∂x

〉
adv

+B =
〈∂uφ
∂x

〉
− ∂〈u〉〈φ〉

∂x
. (39)

Secondly, 〈∂u
′′φ′′

∂x 〉dir is calculated with the values of u′′φ′′ located at the borders of the subdomain as,

〈∂u′′φ′′
∂x

〉
dir I,J

=
1

ny

ny∑
j=1

u′′φ′′
nx+ 1

2 ,j
− u′′φ′′1

2 ,j

∆xNWP
. (40)

Finally, the flux divergence ∂〈u′′φ′′〉
∂x is found by taking the gradient of the subgrid flux in a subdomain,

∂〈u′′φ′′〉
∂x I,J

=
〈u′′φ′′〉I+1,J − 〈u′′φ′′〉I−1,J

2∆xNWP
. (41)

In Fig. 27, the PDFs for the horizontal flux divergences 〈∂u
′′θ′′

∂x 〉adv, 〈
∂u′′θ′′

∂x 〉dir and ∂〈u′′φ′′〉
∂x are given for

∆xNWP = 0.1 km, 0.8 km and 3.2 km in case CBL.

A similarity across the PDFs of the flux divergences in both simulation cases is that they centre around
zero, due to the following reason. Because u′φ′(0) = u′φ′(Lx), the subgrid flux divergence converges to
zero for any simulation and calculation method. There are also differences between the PDFs. It is evi-
dent that the PDFs for 〈∂u

′′θ′′

∂x 〉adv +B are much wider than those of the other two methods. In fact, the
PDFs have a width that is three orders of magnitude larger than the distribution widths for the vertical
flux divergence. If we compare the distribution widths of the flux divergence 〈∂u

′′θ′′

∂x 〉adv +B with those

of 〈∂u
′′θ′′

∂x 〉dir specifically, we observe that the former are about four orders of magnitude larger than the

latter. If we disregard numerical differences, 〈∂u
′′θ′′

∂x 〉dir shows what the distribution of 〈∂u
′′θ′′

∂x 〉adv would
look like without the additional terms B. The large width difference between the distributions suggests
that the contributions B are large (see Eq. (39) and appendix B). The terms B are even larger than

the flux divergence 〈∂u
′′θ′′

∂x 〉adv itself. Therefore we can conclude that 〈∂u
′′θ′′

∂x 〉adv cannot be diagnosed

directly from 〈∂uφ∂x 〉 and ∂〈u〉〈φ〉
∂x , which we know from the LES field.

The flux divergence 〈∂u
′′θ′′

∂x 〉 can be diagnosed both from the advection term in the scalar equation
and directly from the LES field. However, the subgrid transport term in the NWP budget equation is

written with the averaging operator inside of the differential operator, as ∂〈u′′θ′′〉
∂x (see Eq. (14)). The

widths of the distributions for the flux divergence ∂〈u′′θ′′〉
∂x are about a factor of 3 smaller than those of

〈∂u
′′θ′′

∂x 〉dir. The smaller magnitude of the ∂〈u′′θ′′〉
∂x flux divergences indicates that the term Bu′′φ′′ in Eq.

(29) is significant. In addition, numerical differences play a role in the difference between ∂〈u′′θ′′〉
∂x and

〈∂u
′′θ′′

∂x 〉dir. For example, for ∆xNWP = 6.4 km and 12.8 km the value of ∂〈u′′θ′′〉
∂x is always zero, whereas

〈∂u
′′θ′′

∂x 〉dir is zero for ∆xNWP = 12.8 km, but nonzero for ∆xNWP = 6.4 km. The grid sizes where the
flux divergence is zero follow directly from how both variants of the flux divergences were defined in Eq.

(40) and Eq. (41), respectively. Moreover, ∂〈u′′θ′′〉
∂x uses the data points from coarse-grained grid boxes

at I − 1 and I + 1 (see Eq. (41)). It is not based on the local fluctuations in the grid box at I, where

we want to know the flux divergence. This makes ∂〈u′′θ′′〉
∂x less representative of the local subgrid transport.

All in all, when we attempt to diagnose the flux divergence 〈∂u
′′θ′′

∂x 〉 from the advection term, we find the
flux divergence plus additional terms B of significant magnitude. Instead the flux divergence can be found
directly from the LES field. This flux divergence, 〈∂u

′′θ′′

∂x 〉dir, is the term that appears when we derive
the scalar equation for NWP models (see chapter 3.3). However, the subgrid transport term in the scalar
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equation is currently written as ∂〈u′′θ′′〉
∂x . We have seen that taking the differential operator inside the

averaging operator to obtain ∂〈u′′θ′′〉
∂x from 〈∂u

′′θ′′

∂x 〉 introduces a nonzero boundary term Bu′′φ′′ . So, the
flux divergence as it is currently written in the NWP budget equation, underestimates the contribution
of the subgrid transport to the tendencies of the mean.

Figure 27: Distributions of flux divergences (a) ∂〈u′′θ′′〉
∂x , (b) 〈∂u

′′φ′′

∂x 〉adv +B and (c) 〈∂u
′′θ′′

∂x 〉dir, for z/zi
= 0.5 and case CBL. The distributions are created from multiple LES fields sampled every 5 minutes
between t = 7 h and t = 8 h. The x-axis has been limited to values between -0.15 and 0.15 Kh−1 for (a),
-1 and 1 Ks−1 for (b) and -0.3 and 0.3 Kh−1 for (c), to exclude the values that are almost zero.

In addition to the comparison of the three methods of obtaining the flux divergence, we can also use it
to compare the contribution of vertical and horizontal fluxes to the tendencies of the mean. If we just
consider the vertical and horizontal transport in the form of 〈∂w

′′θ′′

∂z 〉 and 〈∂u
′′θ′′

∂x 〉 in Fig. 13(b) and
Fig. 27(c-d), respectively, we can conclude that the widths of the distributions for vertical transport are
only a factor of 2 larger than the widths of the distributions for horizontal transport. The distributions
having a comparable width suggests that vertical and horizontal subgrid transport contribute similarly
to the tendency of the mean in the grey zone. This is an important result, because it shows that, in the
grey zone, we have to take horizontal subgrid transport into account. Although the NWP models that
operate at grid sizes beyond grey zone resolutions neglect horizontal subgrid transport, it is clear that
this assumption is no longer valid within the grey zone.
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4.3 K-diffusion analysis

In the following, the scale and directional dependency of the eddy diffusivity is explored in further de-
tail. We focus on the eddy diffusivity for moisture Kqt , because its values are positive everywhere in
the boundary layer. 〈Kqt〉 is the eddy diffusivity in a particular subdomain. It is defined for both the
vertical and horizontal direction according to Eq. (34), as the ratio of the subgrid flux and the scalar
gradient in that subdomain. For a particular ∆xNWP /zi, each subdomain will have a separate vertical
K-profile. This is illustrated in Fig. 28, where the vertical profiles of the eddy diffusivity are given for
the entire domain and for the four subdomains that remain at ∆xNWP = 6.4 km. The slab-averaged
eddy diffusivity Kqt,z over the entire slab gives a strictly positive vertical profile in the boundary layer
(see Fig. 28(a)). In Fig. 28(b) it can be seen that the four subdomains at ∆xNWP = 6.4 km each have
a different vertical profile.

Figure 28: Vertical profile for Kqt,z (a) and vertical profiles of 〈K〉qt,z for the four subdomains at ∆xNWP

= 6.4 km (b), determined from instantaneous values at t = 8 h, for case CBL.

To probe the scale dependency of K, a representative average is calculated for different ∆xNWP at z/zi
= 0.1, 0.5 and 0.7. The K-value representing the average for a certain ∆xNWP at a particular height
is obtained using two different methods. Using an arithmetic mean is not practical here, because there
exist very large outlier values in the sample that make the mean biased toward those values. To keep
the outliers from affecting the result too much, the median of the distribution of subdomain K-values,
Kmedian, can be used to represent the average instead. Alternatively, 〈Kqt〉 can be found by fitting a

linear relation through a scatter plot of ∂〈qt〉
∂z and 〈w′′q′′t 〉. A linear least squares fitting procedure is used

to fit a line through the origin. The slope of the fitted graph indicates the value of Kfit. Kmedian and
Kfit are plotted against ∆xNWP . If the methods yield similar results, it is an indication of the robustness
of the results. According to Eq. (32), it is expected that K will be lower for smaller ∆xNWP , because the
mixing length l is known to decrease with smaller ∆xNWP (Efstathiou and Beare (2015)). The analysis
can be extended to θ, as well as the x-direction.

In Fig. 29(a) the vertical eddy diffusivity Kqt,z is plotted against ∆xNWP /zi. Both methods show that
Kqt,z increases rapidly at small ∆xNWP and then reaches an asymptotic value at ∆xNWP = 3.2 km.
Note that Kfit lacks the last data point at ∆xNWP = Lx, because there were too few data points to
do a meaningful fit. Besides this, the two methods of obtaining Kqt,z give results that are in agreement.
Also, we can determine the eddy diffusivity for the entire slab directly with Eq. (34), by dividing the
slab-averaged vertical subgrid flux by the vertical gradient of the slab-averaged qt. This eddy diffusivity is
also shown in Fig. 29(a). The value of Kmedian at ∆xNWP = Lx is similar to the actual value determined
directly via Eq. (34). This means that the median represents the slab-average of the eddy diffusivity
suitably.
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Figure 29: Kqt,z (a) and Kqt,x (b) from the median (continuous lines) and from linear fitting (dashed
lines) plotted against ∆xNWP /zi at z/zi = 0.1, 0.5 and 0.7 for case CBL. The results for the median are
obtained from multiple LES fields sampled every 5 minutes between t = 7 h and t = 8 h. The fit was
done with the instantaneous values for t = 8 h. In (a) the values of K for the entire domain determined
directly with Eq. (34) are shown as dots at ∆xNWP = Lx.

The horizontal eddy diffusivity Kqt,x is plotted against ∆xNWP for case CBL in Fig. 29(b). The
behaviour of Kθ,x and Kqt,x is similar, so Kθ,x is not shown here. For the horizontal, Kmedian and Kfit

look very different. For small ∆xNWP , it seems that Kqt,x increases almost linearly for both the medians
and the fitted values. The values are significant, suggesting that we do need to take the horizontal
subgrid flux into account in the grey zone. At larger ∆xNWP /zi the median and fitted values start to
diverge for z/zi = 0.5 and 0.7. At z/zi = 0.1 both methods are in agreement until before the value at
∆xNWP /zi = 2.7, which corresponds with ∆xNWP = 3.2 km. The values at ∆xNWP /zi = 2.7 are quite
unreliable, because they are based on few data points. For ∆xNWP larger than 3.2 km, the horizontal
potential temperature gradients are zero, while the horizontal subgrid fluxes are nonzero. Therefore the
eddy diffusivity K obtained via Eq. (34) is meaningless at these grid sizes. The results for Kqt,x in case
CBLws show increasingly negative values for larger grid sizes. These negative values suggest some form
of counter-gradient transport, which does not follow the widely used down-gradient diffusion approach
(Eq. (31)). From Fig. 29, it also appears that the eddy diffusivity is different for vertical and horizontal
transport. Note that currently an isotropic eddy diffusivity is used in Smagorinsky-type subgrid models.
The comparison of Kz and Kx shows that their scale dependency is not the same. Note that we can
only compare Kz and Kx at grid sizes smaller than ∆xNWP = 3.2 km, because at larger grid sizes the
eddy diffusivity cannot be defined using Eq. (34). Nevertheless, for grid sizes up until 3.2 km, it can be
concluded that there is a need for an anisotropic model for the eddy diffusivity. The eddy diffusivity for
horizontal transport Kx and for vertical transport Kz have to be defined separately.
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5 Conclusion

Coarse-graining high-resolution LES results makes it possible to diagnose the scale dependency of verti-
cal and horizontal fluxes as well as their divergences that control the temporal changes of the grid box
mean values. Both subgrid and resolved fluxes were analysed from the coarse-grained fields. Two LES
simulation cases were used in the experiment. The first case, referred to as case CBL, is a CBL case in
which the buoyancy flux has a strong contribution from the moisture flux (see De Roode et al. (2004) for
details). The second case is a CBL case with strong wind shear and subsidence, called case CBLws.

First we studied the results for the vertical fluxes, to confirm that the coarse-graining approach yielded
results that could be physically understood and were in agreement with existing literature. From our
results we found that the vertical turbulent fluxes are entirely resolved at the LES resolution, and are
no longer resolved at the onset of the grey zone, at resolutions of around 10 km. Such a transition from
resolved to subgrid turbulent fluxes in the grey zone is consistent with flux partitioning shown in Honnert
et al. (2011) and Shin and Hong (2013). It was also found that the magnitude of the vertical subgrid
fluxes increases with grid size, until it levels off at a 3.2 km grid size. The grid size at which resolved and
subgrid contributions to the turbulent flux of a particular quantity are equal, is a measure for the scale
of the structures of that quantity. The grid size where resolved and subgrid contributions are equal in
this experiment, measured in the middle of the boundary layer, indicated that the turbulent structures
for θv have a smaller scale than for θ and qt, which is in agreement with De Roode et al. (2004). Because
in a dry boundary layer θ and θv are equal, the flux for θv also shows that the scale of the structures for
θ would be smaller in a dry CBL as compared to the CBL with moisture. Corroborating the result from
Honnert et al. (2011), we find that the transition from resolved to subgrid fluxes is different for θ and
qt, which is an indication that they have to be parametrised separately, instead of using the same scalar
eddy diffusivity for both quantities.

Horizontal turbulent fluxes, like the vertical fluxes, are no longer resolved at resolutions of about 10
km. In case CBL, we find that below the entrainment zone, the horizontal heat, moisture and buoyancy
fluxes are up to two orders of magnitude smaller than the vertical fluxes. However, when we increase the
momentum flux by imposing a greater wind shear in case CBLws, the magnitude of the horizontal heat,
moisture and buoyancy fluxes even becomes larger than the magnitude of the vertical fluxes. This shows
that the wind shear has a large effect on the horizontal subgrid fluxes. Like the vertical subgrid fluxes,
the horizontal subgrid fluxes overall become larger with increasing grid size. In case CBL, the magnitude
of the horizontal subgrid fluxes does not increase consistently and sometimes decreases with respect to
the magnitude at a smaller grid size. Case CBLws does show a steady increase in horizontal subgrid flux
magnitude as the grid size increases. Interestingly, Kurowski and Teixeira (2018) found that the subgrid
horizontal fluxes decrease with grid size, which is completely opposite to what we conclude from our
results. Furthermore, to see how the horizontal subgrid fluxes influence the tendency of the mean quanti-
ties in an NWP model, we looked at the horizontal flux divergences. To visualise the flux divergences we
plotted their probability distributions. In both case CBL and case CBLws, the slab-averaged horizontal
flux divergences over the entire LES domain will be zero due to periodic boundary conditions. Therefore
we focus on the width of the distributions to determine the impact of the horizontal subgrid transport
on the tendency of the mean quantities in an NWP model. We also diagnosed the distributions for the
vertical flux divergence, which gives this impact for vertical transport. When we compare the vertical
and horizontal flux divergences, it is found that the width of the distributions for the vertical and hori-
zontal flux divergences have the same order of magnitude. This means that the vertical and horizontal
transport contribute similarly to the tendency of the mean in NWP models. In NWP models with grid
sizes beyond grey zone resolutions, the horizontal transport is usually neglected under the assumption
of horizontal homogeneity of the turbulent field. However, our findings suggest that this assumption is
no longer valid in the grey zone, so horizontal transport has to be taken into account. Also, the effects
of the periodic boundary conditions on the flux divergence are not yet known exactly. In future work, a
larger LES domain could be simulated to avoid the possible influence of the periodic boundary conditions.

Finally, we diagnose the scale and directional dependency of the eddy diffusivity K, to determine whether
or not it is suitable to use a down-gradient diffusion approach in an NWP parametrisation. From the
coarse-grained fields we know the vertical and horizontal subgrid fluxes and scalar gradients for a range
of grid sizes. K can be determined from the subgrid fluxes and scalar gradients for each grid box at
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a particular grid size and height. Using the median of the distribution of all values of K at a partic-
ular height, or linearly fitting a relation between the scalar gradients and the subgrid fluxes, both give
a meaningful representative for the average of K. The eddy diffusivity for vertical transport increases
rapidly and then reaches an asymptotic value for a grid size of 3.2 km. However, the eddy diffusivity for
horizontal transport does not show the same scale dependency as for vertical transport. Kx has positive
and negative values and does not seem to converge to a single value. Moreover, at grid sizes above 3.2 km,
Kx is undefined in this experiment. This is because, at those grid sizes the horizontal scalar gradients
are zero, while the horizontal subgrid fluxes are nonzero. At least for the grid sizes below 3.2 km, we
can say that Kz and Kx do not have the same scale dependency. Kurowski and Teixeira (2018) also
showed the scale dependency of the eddy diffusivity K. However, they used the same eddy diffusivity
for the vertical and horizontal direction. Their results are in agreement with our results for the vertical
direction, but not for the horizontal direction. The difference in scale dependency between Kz and Kx

from our results suggests that an isotropic K, which is used by Kurowski and Teixeira (2018) as well as
in DALES itself, is not appropriate in the grey zone. K also appears in the approach that Boutle et al.
(2014) use to represent partially resolved turbulence in the grey zone. Their parametrisation relies in part
on a Smagorinsky-type model that solves the TKE equation using a down-gradient diffusion approach
for the buoyancy flux and wind shear production term. The anisotropy of K that is found in our results
should be taken into account in any parametrisation where a down-gradient diffusion approach is used.
From our LES results we are able to diagnose the scale dependency of Kz in a down-gradient diffusion
approach, which validates the literature. Kz increases with grid size to an asymptotic value. For Kx, we
find positive and negative values and the values beyond 3.2 km are undefined. Therefore, further study
of the eddy diffusivity for horizontal transport is needed to establish whether it makes sense physically
to base parametrisations on it for the grey zone, or if it needs to be abandoned altogether.

The analyses of the vertical subgrid fluxes are largely in agreement with the literature, making the coarse-
graining of LES fields a valuable diagnostic tool for vertical subgrid fluxes. For the horizontal subgrid
fluxes, there is little other material to compare the results with. In further work, horizontal subgrid
fluxes should be diagnosed using different simulation cases and domain sizes. This will further expand
our understanding of the behaviour of the horizontal subgrid fluxes in the grey zone.
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Appendix

A - Self-similar coarse-graining

This coarse-graining method generates a self-similar grid with a series of interpolations (see figure 30).
For each coarse-graining step a staggered grid is obtained, with the velocities at the face centres and the
scalar quantities in the centre of the grid box. First the scalar quantities are averaged with Eq. (18)
as described in chapter 3.3. The velocities can also be averaged using Eq. (18). The resulting average
velocities are located between the face and the centre of the grid box, while the scalar averages are located
at the grid box centres. The coarse-grained grid is now not structured in the same way as the original
grid and additional steps have to be taken to make the grid self-similar. The approach is illustrated in
Fig. 30. Firstly, the two distinct average velocities are found with Eq. (18) for two overlapping sets
of four points. These are 〈u〉I− 1

4 ,J
and 〈u〉I− 3

4 ,J
. For coarse-graining order n the average velocities are

found with Eqs. (42),

〈u〉I− 1
4 ,J,n

=
1

nxny

nxI∑
i=nx(I−1)+1

nyJ∑
j=ny(J−1)+1

ui− 1
2 ,j

〈u〉I− 3
4 ,J,n

=
1

nxny

nxI∑
i=nx(I−1)+1

nyJ∑
j=ny(J−1)+1

ui−1 1
2 ,j

, (42)

where nx = ny = 2n. The grid created by the previous coarse-graining order forms the basis for the new
grid. In every coarse-graining step, the indices of the previous grid are i and j and the indices of the new
grid are I and J . So after each step I and J turn into i and j. In order to create the self-similar average
velocity 〈u〉I+ 1

2 ,J
at the side of the grid box, an interpolation is required,

〈u〉I− 1
2 ,J,n

=
〈u〉I− 1

4 ,J,n
+ 〈u〉I− 3

4 ,J,n

2
. (43)

A self-similar grid can be obtained in this manner for every coarse-graining order n. This coarse-graining
method can be applied in the y-direction for the other horizontal velocity v, to find 〈v〉. The average
vertical velocity 〈w〉 requires a less complicated calculation. The average velocity at every height is cal-
culated using Eq. (18). Then the average velocities 〈w〉 are located at the bottom face of every grid
box. The self-similar grid method was ultimately abandoned in favour of the method implemented in the
research, because the latter proved much easier to implement and gives a more direct approach to the
coarse-graining process. The self-similar grid method uses so many interpolations that it is difficult to
say if it provides an accurate representation of an output grid with a larger grid size.
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Figure 30: The self-similar coarse-graining method. Red dots denote the positions of scalars φ and the
blue crosses denote the positions of velocities u. The average 〈φ〉 is depicted as a red circle. Intermediate
averages of u at the quarter levels are shown as blue circled crosses and the final average is shown as a
blue boxed cross.
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B - Derivation of the subdomain-averaged advection and flux divergences

Our objective is to diagnose the flux divergence 〈∂u
′′φ′′

∂x 〉 from the advection term 〈∂uφ∂x 〉 in the scalar
equation. Ignoring molecular dissipation we can write for the scalar equation,

∂φ

∂t
= −u∂φ

∂x
− v ∂φ

∂y
− w∂φ

∂z
. (44)

Using the continuity equation Eq. (44) can be rewritten as,

∂φ

∂t
= −∂uφ

∂x
− ∂vφ

∂y
− ∂wφ

∂z
. (45)

If we apply the subdomain averaging operator 〈.〉 to Eq. (45), we obtain,〈∂φ
∂t

〉
= −

〈∂uφ
∂x

〉
−
〈∂vφ
∂y

〉
−
〈∂wφ
∂z

〉
. (46)

With an approach similar to Reynolds averaging, the advection term averaged over the subdomain 〈∂uφ∂x 〉
can be expanded by replacing u and φ according to Eq. (19),

〈∂uφ
∂x

〉
=
〈 ∂

∂x
(〈u〉+ u′′)(〈φ〉+ φ′′)

〉
=
〈∂〈u〉〈φ〉

∂x

〉
+
〈∂〈u〉φ′′

∂x

〉
+
〈∂u′′〈φ〉

∂x

〉
+
〈∂u′′φ′′

∂x

〉
. (47)

To further simplify Eq. (47), we want to bring the averaging operator inside the differential operator for
the first three terms. In the following, we will use f to represent the flux-like quantities 〈u〉〈φ〉, 〈u〉φ′′ or
u′′〈φ〉 that appear in Eq. (47). For the sake of the this derivation, we consider the sudomain-averaging
in 2D (the x and y-direction). According to Leonard (1974), the subdomain averaging as in Eq. (18) can
be written as a convolution of the function f with a function G0 that defines the filtering method,

〈f〉 =

∫∫
G0(x− x′, y − y′)f(x′, y′)dx′dy′. (48)

In this case we use a simple square filter given by,

G0(x− x′, y − y′) =

{
1

∆x2
NWP

, for 0 ≤ x− x′ ≤ ∆xNWP , 0 ≤ y − y′ ≤ ∆xNWP

0, otherwise
. (49)

Note that we assume here that f is continuous. The quantities that are represented by f come from the
LES fields of u and φ, which are of course discrete. For convenience the function G0(x − x′, y − y′) is
split into two identical functions for the x- and y-direction,

G(x− x′, y − y′) = G(x− x′)G(y − y′), (50)

with,

G(x− x′) =

{
1

∆xNWP
, for 0 ≤ x− x′ ≤ ∆xNWP

0, otherwise
. (51)

Now we can write 〈∂f∂x 〉 as,〈∂f
∂x

〉
=

∫
G(y − y′)

∫
G(x− x′)∂f(x′, y′)

∂x′
dx′dy′. (52)

Integration by parts gives,〈∂f
∂x

〉
=

∫
G(y − y′)

([
f(x′, y′)G(x− x′)

]
−
∫
f(x′, y′)

∂G(x− x′)
∂x′

dx′
)
dy′. (53)

It can be shown that ∂G(x−x′)
∂x′ = −∂G(x−x′)

∂x . If we apply this to Eq. (53), the sign is flipped before the
second integral and G is differentiated to x instead of x′,〈∂f

∂x

〉
=

∫
G(y − y′)

([
f(x′, y′)G(x− x′)

]
+

∫
f(x′, y′)

∂G(x− x′)
∂x

dx′
)
dy′. (54)
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Now ∂
∂x can be taken outside the second integral. Splitting the equation into two integral terms we

obtain,

〈∂f
∂x

〉
=

∫
G(y − y′)

[
f(x′, y′)G(x− x′)

]
dy′ +

∂

∂x

∫∫
G(y − y′)G(x− x′)f(x′, y′)dx′dy′. (55)

The second term can be rewritten with Eq. (48), and becomes equal to ∂〈f〉
∂x . In addition, G(x− x′) and

G(y−y′) are substituted in Eq. (55) according Eq. (51). The functions G limit f to the interval between
x−∆xNWP and x and they give the bounds of the integral over y′,〈∂f

∂x

〉
=

1

∆x2
NWP

∫ y

y−∆xNWP

[
f∆xNWP

(x′, y′)
]
dy′ +

∂〈f〉
∂x

, (56)

where f∆xNWP
is defined as the function f limited to the interval between x−∆xNWP and x,

f∆xNWP
(x′, y′) =

{
f(x′, y′), for x−∆xNWP ≤ x′ ≤ x
0, otherwise

. (57)

The positions x and y determine for which grid box the average is calculated. Note that the quantities
represented by f have discontinuities at multiples of ∆xNWP , which are the grid box borders, so it is not
trivial to find f there. Summarised, when we take the averaging operator inside the differential operator
an additional term appears, 〈∂f

∂x

〉
= Bf +

∂〈f〉
∂x

. (58)

Here we denote the additional term that arises when converting 〈∂f∂x 〉 to ∂〈f〉
∂x by Bf . The additional term

Bf is thus given by,

Bf =
1

∆x2
NWP

∫ y

y−∆xNWP

f∆xNWP
dy (59)

With Eqs. (58) and (59), which give the additional terms that appear when we take the averaging
operator inside the differential operator, we can rewrite Eq. (47) as,

〈∂uφ
∂x

〉
=
∂〈〈u〉〈φ〉〉

∂x
+

∫ y

y−∆xNWP

〈u〉〈φ〉∆xNWP
dy

+
∂〈〈u〉φ′′〉

∂x
+

∫ y

y−∆xNWP

〈u〉φ′′∆xNWP
dy

+
∂〈u′′〈φ〉〉

∂x
+

∫ y

y−∆xNWP

u′′〈φ〉∆xNWP
dy

+
〈∂u′′φ′′

∂x

〉
.

(60)

The average of a fluctation is zero, so the cross-terms drop out. Their additional terms remain, however.
Removing the cross-terms and summarising the additional terms as B, we can write,〈∂uφ

∂x

〉
=
∂〈u〉〈φ〉
∂x

+
〈∂u′′φ′′

∂x

〉
+B. (61)

Here B is a summation of the terms B〈u〉〈φ〉, B〈u〉φ′′ and Bu′′〈φ〉 (see the notation Bf in Eq. (59)).
Individually, the additional terms are given by the integral over y of the function f∆xNWP

following Eq.
(59),
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B = B〈u〉〈φ〉 +B〈u〉φ′′ +Bu′′〈φ〉

=

∫ y

y−∆xNWP

〈u〉〈φ〉∆xNWP
dy

+

∫ y

y−∆xNWP

〈u〉φ′′∆xNWP
dy

+

∫ y

y−∆xNWP

u′′〈φ〉)∆xNWP
dy.

(62)

Note that it is not straightforward to obtain B because of the discontinuities on the grid box borders of

the quantities 〈u〉〈φ〉, 〈u〉φ′′ and u′′〈φ〉. In the study, B is estimated by comparing the 〈∂u
′′φ′′

∂x 〉+B found

from the difference between 〈∂uφ∂x 〉 and ∂〈u〉〈φ〉
∂x , with the 〈∂u

′′φ′′

∂x 〉dir obtained directly from the LES field.

Furthermore, Eqs. (58) and (59) also describe the term Bu′′φ′′ that appears when 〈∂u
′′φ′′

∂x 〉 becomes
∂〈u′′φ′′〉

∂x . The former follows from the scalar equation and is not equal to the latter, which is the form
currently used in the NWP budget equation (see Eq. (14)). We repeat Eq. (29) where Bu′′φ′′ appears,〈∂u′′φ′′

∂x

〉
=
∂〈u′′φ′′〉
∂x

+Bu′′φ′′ . (63)

Generally Bu′′φ′′ is nonzero due to a discontinuity at the boundary. Seeing as ∂〈u′′φ′′〉
∂x is the form of

the flux divergence used in the NWP budget equation and 〈∂u
′′φ′′

∂x 〉 is the form that we derived from the
coarse-graining the scalar equation (see Eq. (47)), it is important to diagnose Bu′′φ′′ . Only if Bu′′φ′′ is

small, it is justified to use ∂〈u′′φ′′〉
∂x instead of 〈∂u

′′φ′′

∂x 〉 in the NWP budget equation.

Taking the averaging operator inside the differential operator does not generate an additional term Bf
for derivatives along the z-direction. This is because the averaging operator and the differential operator
work along different directions. The averaging operator takes the average in the x- and y-direction ac-
cording to Eq. (18). The differential operator ∂

∂z is directed along the z-direction. Because the operators
act along different directions, extra terms do not appear.
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