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ABSTRACT

Relationships between parameters of convective entrainment into a shear-free, linearly stratified atmosphere
predicted by the zero-order jump and general-structure bulk models of entrainment are reexamined using data
from large eddy simulations (LESs). Relevant data from other numerical simulations, water tank experiments,
and atmospheric measurements are also incorporated in the analysis. Simulations have been performed for 10
values of the buoyancy gradient in the free atmosphere covering a typical atmospheric stability range. The
entrainment parameters derived from LES and relationships between them are found to be sensitive to the model
framework employed for their interpretation. Methods of determining bulk model entrainment parameters from
the LES output are proposed and discussed.
Within the range of investigated free-atmosphere stratifications, the LES predictions of the inversion height

and buoyancy increment across the inversion are found to be close to the analytical solutions for the equilibrium
entrainment regime, which is realized when the rate of time change of the CBL-mean turbulence kinetic energy
and the energy drain from the CBL top are both negligibly small. The zero-order model entrainment ratio of
about 0.2 for this regime is generally supported by the LES data. However, the zero-order parameterization of
the entrainment layer thickness is found insufficient. A set of relationships between the general-structure en-
trainment parameters for typical atmospheric stability conditions is retrieved from the LES. Dimensionless
constants in these relationships are estimated from the LES and laboratory data. Power-law approximations for
relationships between the entrainment parameters in the zero-order jump and general-structure bulk models are
evaluated based on the conducted LES. In the regime of equilibrium entrainment, the stratification parameter
of the entrainment layer, which is the ratio of the buoyancy gradient in the free atmosphere to the overall
buoyancy gradient across the entrainment layer, appears to be a constant of about 1.2.

1. Introduction

The atmospheric convective boundary layer (CBL) is
a particular type of turbulent boundary layer forced by
buoyancy flux originating at the bottom of the layer
(surface heating) or at its top (radiative cooling from
clouds), or both. Buoyant convection is usually the main
mechanism of turbulence production in the CBL, and
the contribution of wind shear to the generation of tur-
bulence is of secondary importance. In cases when shear
production is negligible compared to the buoyancy pro-
duction of turbulence within the CBL, the CBL is con-
sidered shear-free. This paper focuses on the clear (no
clouds), shear-free CBL driven by buoyancy forcing
only from the underlying surface.
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The discussion below is presented in terms of buoy-
ancy, defined as b ! "g(# " #0)/#0, where # is the
density of the fluid, #0 is the reference density, and g
is the acceleration due to gravity. The virtual potential
temperature $% can be used instead of # to define buoy-
ancy, b ! g($% " $%0)/$%0, where $%0 is the reference
value of $% since, in most atmospheric cases, the two
can be assumed to be linearly related.
The CBL can be subdivided into three separate layers:

the surface layer, in which the buoyancy decreases fairly
rapidly with height; the mixed layer, where mean ver-
tical buoyancy gradients are near zero; and the entrain-
ment zone (also referred to as the inversion layer or
interfacial layer), where buoyancy once again increases
significantly with height. Further details about CBL
structure are provided in several atmospheric boundary
layer textbooks. This paper focuses on the entrainment
zone in which air from the free atmosphere, which is
more buoyant than the CBL air, is entrained across the
inversion layer into the convectively mixed layer as the
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CBL grows. Such convective entrainment is maintained
by the penetration of thermals into the stably stratified
atmosphere above the CBL and subsequent folding of
more buoyant air from aloft into the CBL, as these over-
shooting thermals sink back into the mixed layer. The
rate of convective entrainment in the clear CBL depends
most critically on the buoyancy stratification in the free
atmosphere above the CBL (Sorbjan 1996) and the mag-
nitude of buoyancy flux at the lower surface.
In atmospheric models of convective entrainment, the

vertical buoyancy distribution in the free atmosphere is
commonly taken to be linear (at least locally) and con-
tinuous (Zilitinkevich et al. 1992; Stevens and Len-
schow 2001). The CBL development and convective
entrainment in a continuously and linearly stratified at-
mosphere have been extensively studied during special
field campaigns (e.g., Chorley et al. 1975; Kaimal et al.
1976; Caughey and Palmer 1979; Caughey 1982; Boers
et al. 1984; Stull and Eloranta 1984; Boers and Eloranta
1986; Boers 1989; Nelson et al. 1989; Batchvarova and
Gryning 1991, 1994; Gryning and Batchvarova 1994;
Lenschow 1998), in laboratory models of the atmo-
spheric CBL and related flow types (e.g., Turner 1968;
1973; Deardorff et al. 1969; Willis and Deardorff 1974;
Deardorff et al. 1980; Deardorff and Willis 1985; Fer-
nando 1991; Fedorovich et al. 1996; McGrath et al.
1997; Fedorovich and Kaiser 1998; Fedorovich et al.
2001a,b), with bulk CBL models (e.g., Ball 1960; Lilly
1968; Plate 1971; Betts 1973; Carson 1973; Tennekes
1973; Stull 1973; Betts 1974; Carson and Smith 1974;
Zilitinkevich 1975, 1991; Zeman and Tennekes 1977;
Deardorff 1979; Driedonks 1982; Driedonks and Ten-
nekes 1984; Fedorovich 1995; Fedorovich and Mironov
1995; Fedorovich 1998), and by numerical simulations
(e.g., Deardorff 1970a, 1974; Sorbjan 1996; Lewellen
and Lewellen 1998; Sullivan et al. 1998; Lock and
MacVean 1999; van Zanten et al. 1999; Fedorovich et
al. 2001a,b; Stevens and Lenschow 2001; Fedorovich
and Thäter 2001; Otte and Wyngaard 2001).
Nevertheless, a consensus has not been reached re-

garding the dependence of the integral parameters of
convective entrainment on the capping inversion
strength and static stability in the free atmosphere. These
integral parameters are the CBL growth rate (also called
the entrainment rate), the entrainment ratio (the ratio of
the buoyancy flux of entrainment to the surface buoy-
ancy flux), and the relative entrainment layer depth (the
ratio of the entrainment layer depth to that of the CBL).
Convective entrainment in the linearly stratified at-

mosphere has been extensively examined within the
framework of the zero-order jump bulk model (ZOM).
The ZOM was introduced in Lilly (1968), used exten-
sively in Zilitinkevich (1991) to investigate particular
regimes of shear-free penetrative convection, and gen-
eralized in Fedorovich (1995). The ZOM parameterizes
the inversion layer by an interface of infinitesimally
small thickness in which buoyancy and buoyancy flux,
averaged over horizontal planes and/or in time, have

zero-order discontinuities. More recently, Lilly (2002)
suggested that local profiles of buoyancy and buoyancy
flux may actually resemble the ZOM parameterization
very closely and that the differences between ZOM and
horizontally averaged profiles of buoyancy and buoy-
ancy flux may disappear if a transformed coordinate
system is used. Details of the ZOM methodology and
associated entrainment parameterizations are provided
in the next section.
Inspired by Deardorff’s (1979) ideas, Fedorovich and

Mironov (1995) developed a general-structure model
(GSM) of entrainment. The model is based on a self-
similar representation of the buoyancy profile within the
entrainment zone that in GSM, unlike in ZOM, has a
finite nonzero thickness. Details of the GSM are also
given in the next section. The GSM model provided an
explanation for some ambiguous relationships between
the entrainment parameters in the water tank experi-
ments of Deardorff et al. (1980), but it has not yet been
tested against large eddy simulation (LES) data.
In the present study, the relationships between the

integral parameters of convective entrainment in the lin-
early stratified atmosphere are investigated numerically,
by means of a large eddy simulation. Data from other
numerical and experimental studies are also used in the
analysis. The investigated ranges of the CBL depth and
the stratification strength cover most of their atmo-
spheric variability.
Output of the LES is interpreted in terms of the bulk

models and compared with analytical solutions of the
ZOM for the particular regime of equilibrium (quasi
stationary) entrainment. The regime of equilibrium en-
trainment is realized when the rate of time change of
the CBL-mean turbulence kinetic energy and the energy
drain from the CBL top are both negligibly small. The
occurrence of this regime, which is characterized by a
constant value of the entrainment ratio, is verified
through numerical solutions. Entrainment predictions by
the ZOM and GSM are compared with entrainment char-
acteristics derived from LES. Inherent limitations of the
bulk model parameterizations of convective entrainment
are demonstrated and discussed.

2. Bulk models of convective entrainment

a. Zero-order jump model

Under typical atmospheric conditions, three regions
(sublayers) can be distinguished within the CBL: the
near-surface layer, the convectively mixed layer, and the
inversion layer. The mean buoyancy in the convectively
mixed layer, bm, is approximately constant with respect
to height. Close to the surface, the buoyancy decreases
with height from its surface value to its mixed layer
value, bm. The mean vertical turbulent buoyancy flux
B, obtained by the horizontal and/or time averaging,
decreases linearly with height in the mixed layer. Its
zero-crossing height roughly corresponds to the mixed-
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FIG. 1. Representation of the buoyancy b and buoyancy flux B
profiles in the ZOM and GSM, after Fedorovich and Mironov (1995).
The GSM b and B profiles, which schematically are rather close to
typical atmospheric b and B profiles, are shown by thin solid lines,
and their ZOM counterparts are given by heavy dashed lines. See the
text for notation.

layer top. Above the mixed layer, the buoyancy increas-
es sharply with height throughout the capping inversion,
and its net change over the finite depth of the interfacial
layer is denoted as &b. The buoyancy flux reaches a
minimum at some level within the inversion and van-
ishes toward the upper boundary of the inversion.
The ZOM representation of the vertical buoyancy

profile in the atmospheric CBL (Zilitinkevich 1991; Fe-
dorovich and Mironov 1995) is based on the aforemen-
tioned observational evidence. This representation is il-
lustrated in Fig. 1. The mean buoyancy b is taken to be
depth constant and equal to bm throughout the whole
CBL. The inversion (interfacial) layer is replaced by a
zero-order discontinuity surface with a buoyancy jump
'b at the level zi, approximately halfway through the
inversion layer (for the remainder of this paper, & refers
to the net change in any time- and horizontally averaged
quantity across the inversion layer, and ' refers to the
ZOM representation of this change). Stratification in the
free atmosphere above the CBL is characterized by a
positive vertical buoyancy gradient db/dz ! N 2, where
N is the Brunt–Väisälä (buoyancy) frequency. In a lin-
early stratified free atmosphere, at z ( zi, the mean
buoyancy profile is given by b ! bm ) 'b ) N 2(z "
zi).
The horizontally averaged buoyancy transport equa-

tion has the form
*b *B

! " . (1)
*t *z

When integrated over the CBL depth from the surface
(z ! 0) to the outer edge of the inversion layer (z ! zi)),

with due regard for the ZOM parameterization of the
vertical buoyancy profile described above, Eq. (1) yields
the equation of the buoyancy budget in the CBL:

2 2d N zi " z 'b ! B , (2)i s! "dt 2
where Bs is the surface value of the vertical buoyancy
flux (see Fedorovich 1995 for details). To arrive at Eq.
(2), the difference between the mean buoyancy in the
convectively mixed layer, bm, and the actual buoyancy
near the surface is neglected. Although this difference
may be substantial, its contribution to the integral buoy-
ancy budget in the CBL is small and can safely be
neglected by virtue of the fact that the surface layer
depth is small compared to the CBL depth.
Integrating Eq. (1) over z from 0 to z ! zi) and taking

into account Eq. (2) yield the ZOM buoyancy flux pro-
file:

z z z dz ziB ! B 1 " ) B ! B 1 " " 'b . (3)s i s! " ! "z z z dt zi i i i

The negative buoyancy flux at z ! zi", Bi + "'b(dzi/
dt), is treated in the ZOM as the entrainment buoyancy
flux (Lilly 1968). As is clear from Fig. 1, &b is larger
than 'b for all N larger than 0, and the absolute value
of the ZOM entrainment flux Bi is larger than the ab-
solute value of the actual buoyancy flux &Bi in its min-
imum.
Given the surface buoyancy flux Bs and the buoyancy

frequency N above the CBL, the buoyancy budget equa-
tion (2) contains two unknowns: the zero-order buoy-
ancy increment 'b (alternatively the mixed-layer buoy-
ancy bm could be used) and the CBL depth zi. One more
equation is required to close the problem, namely, the
so-called entrainment equation.
The method of deriving the entrainment equation dif-

fers by author. Many authors have derived it by directly
relating the entrainment ratio (in some publications re-
ferred to as the entrainment coefficient) to one strati-
fication parameter or another, or simply assuming it to
be a constant. The entrainment ratio is commonly de-
fined as the negative of the ratio of the entrainment
buoyancy flux at the CBL top to the surface buoyancy
flux, "Bi/Bs. Note that with this method, no explicit
treatment of the turbulence kinetic energy (TKE) budget
is required. Indeed, the expression for the entrainment
buoyancy flux, Bi ! "'b(dzi/dt), follows from the
ZOM parameterization of the vertical buoyancy profile
(Lilly 1968) and the budget of mean buoyancy in the
CBL. An assumption on "Bi/Bs immediately gives the
desired equation for zi without an explicit treatment of
the TKE budget in the CBL, although this budget stands
behind any entrainment equation.
We adhere to the approach outlined by Zilitinkevich

(1991), which is based on the explicit treatment of the
TKE budget and physically transparent hypotheses
about the vertical profiles of the TKE and its dissipation
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rate within the CBL. In this manner, the potential and
inherent limitations of the ZOM, or any other bulk mod-
el, are clarified. The entrainment equation derived by
Zilitinkevich (1991) is rather general and can be applied
to many regimes of entrainment in any two-layer or
linearly stratified fluid. The equation can be reduced to
simpler forms to describe more specific regimes of en-
trainment, such as the equilibrium entrainment regime
considered simultaneously by Betts (1973), Tennekes
(1973), and Carson (1973). We begin with the derivation
of the general entrainment equation and simplify it to
the case of equilibrium entrainment, which we inves-
tigate in this paper.
Consider the (horizontally averaged) transport equa-

tion for the TKE in the shear-free CBL. It reads

*(F ) F )*e e p! B " " ,, (4)
*t *z

where e is the TKE per unit mass, Fe and Fp are the
vertical fluxes of energy associated with turbulent trans-
port and pressure fluctuations, respectively (it is as-
sumed that they both vanish at the underlying surface),
and , is the TKE dissipation rate. Integration of Eq. (4)
over z from z ! 0 to z ! zi) gives the integral TKE
budget in the CBL:

z zi id z dzi ie dz ! B " 'b " - " , dz, (5)# s i #! "dt 2 dt0 0

where - i ! (Fe ) Fp) | stands for the upward energyzi)
flux at the CBL top. This flux is related to the energy
drain from the CBL due to internal gravity waves prop-
agating in the stably stratified free atmosphere aloft
(Stull 1976b; Zilitinkevich 1991).
Based on the Deardorff (1970b) and Zilitinkevich and

Deardorff (1974) scaling considerations for the shear-
free CBL, Zilitinkevich (1991) proposed a parameteri-
zation for e and , in the ZOM:

3z w* z
2e ! w*. , , ! . , (6)e ,! " ! "z z zi i i

where w* ! (BsZi)1/3 is the Deardorff (1970a,b) con-
vective velocity scale and .e, ., are dimensionless uni-
versal functions of the dimensionless height, / ! z/zi.
These functions integrate to two universal constants:

1 1

C ! . (/) d/ and C ! . (/) d/, (7)e # e , # ,

0 0

whose values have to be determined empirically. Ac-
cording to Zilitinkevich (1991), Ce ! 0.5 and C, ! 0.4.
The approximate character of the scaling relations (6)
and (7) suggests some (presumably small) scatter of
empirical estimates of dimensionless constants Ce and
C,. In other words, these constants are not universal in
a strict sense. This indicates an inherent uncertainty of
any ZOM entrainment parameterization.

Substituting Eqs. (6) and (7) into Eq. (5), we obtain
the entrainment equation:

10 dz 'b(dz /dt) 2-i i i"1/3 "1/3C B z ! 1 " " " 2C . (8)e s i ,3 dt B B zs s i

If the left-hand side and the third term on the right-hand
side of the above equation are both small compared to
1, Eq. (8) describes a quasi-stationary evolution of the
CBL in the absence of energy drain by the gravity
waves. This corresponds to the equilibrium entrainment
regime mentioned earlier. In this case, the integral TKE
production by the buoyancy forces is balanced by the
dissipation and the entrainment at the mixed-layer top,
and Eq. (8) reduces to

'b(dz /dt)i ! 1 " 2C + C . (9), 1Bs

The above form of the entrainment equation has been
widely applied in atmospheric models of convection for
almost three decades starting from the simultaneously
and independently published papers by Betts (1973),
Carson (1973), and Tennekes (1973). The value of C1
is commonly taken equal to 0.2 and often considered
to be universal. However, the flow of arguments pre-
sented above suggests that the equilibrium entrainment
associated with a constant entrainment ratio "'b(dzi/
dt)Bs is merely an approximation within the ZOM
framework conditioned by rather stringent assumptions.
Recall, in this regard, that the approximate character of
the similarity hypothesis regarding the vertical profile
of the TKE dissipation rate [see Eqs. (6) and (7)] implies
some spread of the C1 estimates. Therefore, Eq. (9) is
no more than a reasonable approximation, even in the
idealized case of equilibrium entrainment when the left-
hand side of Eq. (8) and - are both negligibly small.
Zilitinkevich (1991) used Eq. (8) to examine the other

limiting case where the CBL grows into a very stable
nonturbulent layer. In that case, the integral TKE budget
was assumed to be chiefly maintained by a gain due to
surface buoyancy source and losses due to dissipation,
entrainment, and the energy drain by internal waves.
Using a reasonable parameterization of - i, based on the
linear theory of internal gravity waves and simple scal-
ing arguments for the amplitude and the length of in-
ternal waves, a number of regimes of entrainment into
a strongly stratified fluid observed in laboratory exper-
iments were explained. As shown below, the regime of
convective entrainment in which the integral TKE bud-
get is dominated by the wave term is not likely to occur
in typical atmospheric conditions, at least not within the
range of the free-atmosphere stratifications considered
in the present study. It may, however, be encountered
in other geophysical flows.
In the equilibrium entrainment regime, the system of

two ZOM equations, Eq. (2) and Eq. (9), for the two
unknowns, 'b and zi, can be written in dimensionless



1 FEBRUARY 2004 285F E D O R O V I C H E T A L .

form using N and Bs as scaling parameters (Zilitinkevich
1991):

2d ẑi " ẑ 'b̂ ! 1, (10)i! "dt̂ 2
dẑi'b̂ ! C , (11)1dt̂

where ẑi ! zi N 3/2, 'b̂ ! ' N "1/2, and t̂ ! tN"1/2 "1/2B bBs s
are the dimensionless CBL depth, the dimensionless
buoyancy increment across the inversion layer, and di-
mensionless time, respectively.
The system (10) and (11) has the following analytical

solution (Zilitinkevich 1991):
1/2ẑ ! [2(1 ) 2C )t̂ ] ,i 1

1/2'b̂ ! C [2t̂ /(1 ) 2C )] . (12)1 1

Apart from the entrainment ratio, the following ZOM
parameters of entrainment are widely employed in at-
mospheric modeling (Deardorff et al. 1980; Nelson et
al. 1989; Zilitinkevich 1991; Fedorovich and Mironov
1995; Stevens and Lenschow 2001): the dimensionless
entrainment rate

1 dziE ! ; (13)
w* dt

the Richardson number Ri'b based on the zero-order
buoyancy increment 'b across the inversion (entrain-
ment) layer,

'b · ziRi ! ; (14)'b 2w*
and the Richardson number RiN based on the buoyancy
frequency N in the turbulence-free fluid above the
CBL,

2 2z NiRi ! . (15)N 2w*
It is easy to notice from the above scaling and from

the ZOM solution (12) for ẑi, and 'b̂ that the above
specified parameters of entrainment can be expressed in
terms of ẑi, 'b̂, and t̂ as

dẑi"1/3 1/3 4/3E ! ẑ , Ri ! 'b̂ẑ , Ri ! ẑ . (16)i 'b i N idt̂
Hence, in the equilibrium entrainment regime, the above
parameters are uniquely related to the dimensionless
time t̂ and to each other in the following way:

"2/3 "1 "1E 0 t̂ 0 Ri 0 Ri ,'b N (17)
and the product of E and Ri'b is constant: ERi'b ! C1.
The height difference 'zi, which is roughly twice the

distance between the B zero-crossing height and zi (see
Fig. 1) is sometimes taken as a measure of the inversion
layer depth in the ZOM (Stull 1976a; Zilitinkevich
1991).

In order to test the ZOM predictions of entrainment,
the experimental data and numerical simulations must
be cast in relevant terms. The method used to determine
'b and zi from the data and simulations is crucial in
order for the test to be consistent with the model frame-
work. For instance, taking &b instead of 'b or assigning
zi to some arbitrary level within the entrainment zone
can lead to erroneous conclusions regarding the ZOM
performance.
In his recent paper, Lilly (2002) suggested that local

(nonaveraged) profiles of buoyancy and buoyancy flux
within the CBL strongly resemble their ZOM counter-
parts and that the smoother profiles found in horizontally
averaged LES and atmospheric data can be explained
using the ZOM profiles and a probability density func-
tion of the upper interface height. Within this frame-
work, horizontally averaged ZOM-like profiles should
be retainable if the vertical coordinate is first trans-
formed by normalizing by the local mixed-layer height
and then performing horizontal averaging within the
new coordinate system. Such an approach has been con-
sidered in this study, but identification of the local in-
terface height from LES output becomes unreliable
when the free atmospheric stratification is small, in
which case the buoyancy jump across the interface can
become so small that it is not distinguishable from other
local vertical gradients in buoyancy that exist within the
mixed layer (at least, not distinguishable by an objective
technique). Attempts to transform the coordinate system
in the LES runs with greatest free atmosphere stratifi-
cation showed some moderate success, so the approach
seems reasonable for cases in which a strong inversion
exists at the CBL top (such as for the stratocumulus-
topped marine boundary layer).

b. General-structure bulk model

In the general-structure models of convective entrain-
ment (e.g., Deardorff 1979; Fedorovich and Mironov
1995), the average buoyancy profile in the inversion
layer and the integral parameters of the entrainment zone
are represented in a more realistic way than in the ZOM.
The GSM allows all the negative buoyancy flux of en-
trainment to take place within an inversion layer of the
finite thickness. The lower interface of the inversion
layer in the GSM coincides with the zero-crossing height
of the buoyancy flux profile, zil. The height ziu at which
B vanishes after reaching the minimum within the en-
trainment zone, is taken as the top of the inversion layer
(see Fig. 1).
The GSM parameterization of the vertical buoyancy

structure of the inversion layer is based on the concept
of self-similarity of the buoyancy profile b(z). This con-
cept was put forward by Kitaigorodskii and Miropolsky
(1970) to describe the vertical structure of the seasonal
thermocline, an oceanic analog of the inversion layer
in the atmosphere. The concept states that the dimen-
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sionless buoyancy profile in the thermocline, F ! (b "
bm)/&b, can be parameterized through a universal func-
tion of dimensionless depth, /e ! (z " zil)/&zi. Here,
bm is the mean buoyancy of the mixed layer of depth
zil, and &b is the buoyancy difference across the ther-
mocline of depth &zi ! ziu " zil. A number of com-
putationally efficient parameterized models based on the
self-similar representation of the buoyancy profile in the
thermocline have been developed and successfully ap-
plied to simulate the evolution of the seasonal ther-
mocline in the ocean (e.g., Kitaigorodskii 1970; Fil-
yushkin and Miropolsky 1981) and the seasonal cycle
of temperature and mixing conditions in freshwater
lakes (e.g., Zilitinkevich 1991; Mironov et al. 1991).
The concept outlined above has also been applied by

Deardorff (1979) and Fedorovich and Mironov (1995)
to the buoyancy profile within the capping inversion of
the atmospheric CBL. In the case of a stably stratified
atmosphere above the inversion, the dimensionless func-
tion F becomes a function of two dimensionless param-
eters: the dimensionless distance from the bottom of the
entrainment layer, /e, and the relative stratification pa-
rameter G, which is the squared ratio of the buoyancy
frequency N in the free atmosphere to the mean buoy-
ancy frequency (&b/&zi)1/2 within the inversion: G !
N 2(&zi/&b).
In the GSM of Fedorovich and Mironov (1995), the

buoyancy profile in the inversion layer is represented as
b ! b ) &bF(/ , G),m e (18)

where the shape function F is approximated by a fourth-
order polynomial of /e. The polynomial satisfies appro-
priate boundary conditions at the upper and lower
boundaries of the inversion layer and the integral con-
dition given by the first term of (19) below. The GSM
of Fedorovich and Mironov (1995) includes the buoy-
ancy budget equations for the layers 0 ! z ! zil and 0
! z ! ziu ! zil ) &zi, derived by integrating the buoy-
ancy transfer equation (1) over the corresponding layers
with due regard to the parameterization (18). These
equations provide two relationships between the three
unknowns, which in the GSM are &b, zil, and &zi. The
entrainment rate equation, which is conceptually similar
to the ZOM entrainment equation (8), closes the prob-
lem. The GSM equations contain two dimensionless em-
pirical constants, which are the integrals of the nor-
malized profiles of the TKE and of its dissipation rate
over the entire CBL (that is, from the surface to the
outer edge of the inversion). Those constants are anal-
ogous to the constants Ce and C, that appear in the ZOM.
The GSM equations additionally contain two empirical
dimensionless functions:

1

C (G) ! F(/ , G) d/ ,b # e e
0

1 /

C (G) ! d/ F(/1, G) d/1. (19)bb # e # e e
0 0

The first of the above functions, Cb(G), often referred
to as the shape factor, should be determined empirically.
The second function, Cbb(G), is then defined by Cb(G)
and the polynomial approximation of the shape function
F. We refer the reader to Fedorovich and Mironov
(1995) for further details regarding the GSM formula-
tion.
It should be pointed out that zi, which is the prog-

nostic variable in the ZOM, is no longer a prognostic
variable in the GSM. It is diagnosed from the GSM
solutions as the height of buoyancy flux minimum with-
in the inversion layer. There are two GSM-specific pa-
rameters that cannot be computed in the framework of
the ZOM; namely, the dimensionless entrainment-layer
depth

&z /z ,i i (20)

and the Richardson number Ri&b based on the total buoy-
ancy jump &b across the inversion layer,

&bziRi ! . (21)&b 2w*
Note that the previously defined parameters E and RiN
are equally applicable in both the ZOM and the GSM,
while Ri'b is essentially a ZOM quantity.
In contrast to the ZOM equations (10) and (11) for

the equilibrium entrainment regime, GSM equations for
&b, zil, and &zi do not allow an analytical solution and
have to be solved numerically. In the present study, we
use the numerical procedure described in Fedorovich
and Mironov (1995). The energy flux at the CBL top
due to internal waves, -u ! -(ziu), is parameterized
using the approach of Zilitinkevich (1991). The GSM
solutions for &b, zil, and &zi will be presented below in
dimensionless form using N "1 and N "3/2 as relevant1/2Bs
time and length scales.

3. LES dataset
a. Simulations performed

Details regarding the LES code employed in this
study can be found in Deardorff (1980), Wyngaard and
Brost (1984), Nieuwstadt and Brost (1986), and Fedo-
rovich et al. (2001a). The settings of LES specifically
used in this study are listed in Table 1. The standard
simulation domain size for this study was x 2 y 2 z !
5 km 2 5 km 2 4 km, with a 50 2 50 2 200 grid and
no vertical stretching used. A 100 2 100 2 200 grid
was also used in the study to test the effects of reso-
lution. Results of testing on a finer grid show that the
means and second-order statistics from simulations on
both employed grids differ by no more than about 5%,
indicating that most runs can be performed on the grid
with coarser horizontal resolution without a detrimental
impact on the simulation results.
The simulations are started with a two-layer temper-

ature profile. The lower layer is a (pre-)mixed layer of
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TABLE 1. Parameters of conducted LES.

Parameter Setting

Domain size 5 km 2 5 km 2 4 km
Grid 50 2 50 2 200 (100 2 100 2 200 also used for testing)
Surface temperature (buoyancy) flux Qs ! 0.3 K m s"1 (Bs ! 9.8 2 10"3 m2 s"3)
Temperature stratification above CBL d$% /dz within 10 gradations from 10"3 K m"1 to 10"2 K m"1 (N from 6 2 10"3

s"1 to 1.8 2 10"2 s"1)
Time step Evaluated from a numerical stability constraint; had a value of about 2 s on

average
Lateral boundary conditions Periodic for all prognostic variables and pressure
Upper boundary conditions Neumann with zero gradient; a sponge layer imposed in the upper 20% of sim-

ulation domain
Lower boundary conditions No slip for velocity, Neumann for temperature, pressure and subgrid TKE,

Monin–Obukhov similarity functions as in Fedorovich et al. (2001a)
Subgrid turbulence closure Subgrid TKE based after Deardorff (1980)

constant $%0, which extends from the surface up to one-
tenth of the domain height. Above the mixed layer, the
potential temperature increases at a constant rate, rang-
ing from d$% /dz ! 10"3 K m"1 to d$% /dz ! 10"2 K
m"1, depending on the simulation being performed. A
constant temperature flux through the bottom surface is
applied, and the CBL is allowed to grow until zi reaches
six-tenths of the domain depth, at which time the sim-
ulation is ended in order to avoid effects of the sponge
layer on the flow properties at the CBL top. The tur-
bulence statistics, which are used to derive ZOM and
GSM entrainment parameters, are calculated by aver-
aging over horizontal planes and over 100 time steps.

b. Derivation of bulk model quantities from LES

In order to test bulk models of convective entrainment
against an LES, one has to specify a consistent proce-
dure for deriving the bulk model variables from an LES
output. Some of these model quantities, such as the
inversion height, the inversion-layer depth, and the
buoyancy increment across the inversion, allow differ-
ent interpretations depending on the type of bulk model.
They should, therefore, be determined from the LES
data in a manner consistent with the employed model
framework.
In the ZOM (see section 2a), parameters of entrain-

ment are expressed in terms of the CBL depth (inversion
height) zi and the zero-order buoyancy jump 'b. The
latter quantity is related to the corresponding zero-order
increment, '$%, of the virtual potential temperature by
'b ! (g/$%0)'$%. Figure 2 shows examples of simulated
profiles of $% and of kinematic heat flux, Q ! , forw1$1%
two values of the free-atmosphere vertical gradient of
$%: d$% /dz ! 10"3 K m"1 and d$% /dz ! 10"2 K m"1. It
illustrates how zi and '$% are evaluated. The inversion
height zi is defined as the vertical distance from the
surface to the level within the entrainment zone where
the total (resolved ) subgrid) heat flux is a min-w1$1%
imum. The zero-order virtual potential temperature in-
crement '$% is calculated as the difference between the
$% value obtained by extrapolation of the $% profile from

the free atmosphere down to the level z ! zi and the $%

value at the lower boundary of the entrainment zone.
This lower boundary is defined as the zero-crossing
height of the kinematic heat flux below the in-w1$1%
version level. Using zi and 'b evaluated in this way,
their dimensionless analogs, ẑi and 'b̂, are computed
as well as ZOM dimensionless parameters E, Ri'b, and
RiN [see Eqs. (13)–(15)]. The use of a height coordinate
system normalized by the local mixed-layer depth, de-
scribed in Lilly (2002) was considered as well, but the
normalization procedure proved to be difficult for cases
with weak stratification of temperature (see the discus-
sion at the end of section 2a).
In the GSM (see section 2b), the inversion height zi

is defined in the same way as in the ZOM, that is, as
the height of the heat flux minimum within the entrain-
ment zone. The height, zil, of the lower interface of the
entrainment zone is defined as the zero-crossing height
of the heat (buoyancy) flux below zi. The height, ziu, of
the upper boundary of the entrainment zone is defined
as the level where the heat (buoyancy) flux either chang-
es sign for the first time above zi or is a small portion
of its value at z ! zi. This method of determining zil
and ziu from simulated profiles of heat flux is illustrated
in Fig. 2b. Using the estimates of zil and ziu, other GSM
parameters of the entrainment zone are calculated as &$%

! $%(ziu) " $%(zil), &b ! (g/$%0)&$%, and &zi ! ziu " zil
(see Fig. 2b). They are further used for evaluation of
the dimensionless entrainment layer thickness, &zi/zi
[see Eq. (20)], and the GSM Richardson number, Ri&b
[Eq. (21)].

4. Evaluation of bulk model predictions through
LES

a. Zero-order model predictions

In the equilibrium entrainment regime specified in
section 2a, the ZOM predicts the normalized CBL depth
to be a function of the square root of dimensionless time
[see Eq. (12)]. This prediction is compared in Fig. 3
with LES results for five different N values. The com-
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FIG. 2. Examples of the turbulent heat flux and virtual potential temperature profiles obtained with LES for the cases of
weak (a) d$% /dz ! 0.001 K m"1 and strong (b) d$% /dz ! 0.01 K m"1 free atmosphere stratification. The order of profiles in
time: dotted, dashed, and solid. Upper and lower interfaces of the entrainment zones are shown for each CBL evolution stage
by straight lines of the corresponding style. The elapsed time between the profiles is of the order of 500 s in (a) and 25 000
s in (b). Evaluation of bulk model variables from the simulated temperature and heat flux distributions is illustrated in (b) for
profiles given by solid curves. See the text for notation.

parison shows that at t̂ ( 100, when the simulated CBL
forgets about initial conditions, the computed ẑi(t̂) val-
ues collapse to a straight line that in log coordinates
corresponds to a 1/2 power law. Such behavior of ẑi is
in accordance with the previously derived Eqs. (16) and
(17), which relate E and RiN to dimensionless time as
E 0 t̂"2/3 and RiN 0 t̂2/3.
As has been discussed in section 2a, the negligibility

of the energy transport at the CBL top is one of the
conditions of equilibrium of entrainment. Another con-
dition is the stationarity of the TKE budget in the CBL.
Our LES data indicate that the energy transport at the
CBL top is, indeed, very weak in the simulated cases.
The transport does not noticeably affect the ZOM value
of ẑi within the considered range of the free-atmosphere
N values. Likewise, the TKE budget is nearly stationary.
Evaluation of Eq. (5) at a time early in an LES run,
when the assumption of the stationarity of the TKE
budget might be expected to fail, showed that the term
on the left-hand side of (5) was only about 5% of any
of the terms on the right-hand side.
Evaluation of C1 from the graph in Fig. 3, using the

expression for ẑi in (12), results in C1 ! 0.17. This
rounds to 0.2, which is the commonly accepted value
of this parameter (Tennekes 1973; Zilitinkevich 1991)
for equilibrium entrainment. The same value of C1 was
obtained in Fedorovich and Conzemius (2001) by direct

evaluation of 'b(dzi/dt)/Bs from the LES output for the
considered range of N variations. Additionally, this val-
ue of C1 can be estimated from the plot of Ri'b(t̂) in
Fig. 4a using the expressions for 'b̂ in (12) and (16),
although the resulting data points have a larger scatter
with this method. In this graph, simulation results for
all 10 values of N are plotted together. It should be noted
that the precision of the '$% evaluation from the sim-
ulated $% profiles is rather poor due to relatively large
fluctuations of entrainment zone depth with time. There-
fore, to ensure a confident evaluation of Ri'b and other
parameters of entrainment, the zi(t) dependencies re-
trieved from the LES data have been approximated by
polynomial or power-law functions, allowing a reduc-
tion in the scatter of these plots. The approximation
method was designed to retain general features of ob-
served dependencies at larger t̂. In Fig. 4b, we show
Ri'b and Ri&b calculated using the original values of
inversion height and entrainment zone thickness from
LES output (without approximation). One may see that
these ‘‘raw’’ values of Ri'b and Ri&b follow the same
power laws as their counterparts in Fig. 4a.
In this way, our LES results generally support the

assumptions of constancy and universality of the ZOM
entrainment ratio, "Bi/Bs ! 'b(dzi/dt)/Bs in the equi-
librium entrainment regime. The simulation data in Figs.
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FIG. 3. Dimensionless CBL depth (inversion elevation) as a func-
tion of dimensionless time. Different symbols correspond to different
thermal stratifications in the free atmosphere as d$% /dz ! 0.002 K
m"1(N ! 0.008 s"1): filled circles, d$% /dz ! 0.004 K m"1(N ! 0.011
s"1): open circles, d$% /dz ! 0.006 K m"1(N ! 0.014 s"1): filled
squares, d$% /dz ! 0.008 K m"1(N ! 0.016 s"1): open squares, and
d$% /dz ! 0.01 K m"1(N ! 0.018 s"1): crosses. The dashed straight
line indicates the universal ZOM solution for the constant-ratio en-
trainment regime, ẑi ! [2(1 ) 2CI)t̂]1/2.

3 and 4 also confirm the relationships in (17) between
the ZOM parameters of equilibrium entrainment.
In Fig. 5, the ZOM entrainment ratio evaluated from

the LES is compared with the actual entrainment ratio at
the inversion level (defined as "&Bi/Bs ! " | i/Bs)w1b1
for cases of relatively weak and relatively strong strat-
ification in the free atmosphere. The LES data indicate
that " | i/Bs significantly changes with N. As seenw1b1
in the plot, its values are rather different between the
d$% /dz ! 0.001 K m"1 and d$% /dz ! 0.01 K m"1 cases.
The observed differences result primarily from differ-
ences in buoyancy flux profile shapes in the entrainment
zone between these two cases, as seen in Fig. 2. Such
differences in buoyancy flux profiles related to temper-
ature stratification are also discussed in Sorbjan (1996).
With weak stratification, the profile of vertical buoyancy
flux in the lower portion of the entrainment zone looks
much less linear than its ZOM approximation shown in
Fig. 1, curving gradually through its minimum back
toward zero, whereas the ZOM counterpart continues
linearly until the minimum is reached, without a no-
ticeable curvature. Consequently, the ZOM value of en-
trainment flux, Bi ! "'b(dzi/dt), does not appropriately
characterize the actual minimum value of buoyancy flux
at zi (see also van Zanten et al. 1999). With strong
stratification, the shapes of the ZOM and LES buoyancy
flux profiles between zil and zi resemble each other much

better, and the "&Bi/Bs ratios derived from LES are
closer to the ZOM estimate of 0.17. The actual ratio
"&Bi/Bs, therefore, changes with N, whereas the ZOM
entrainment ratio, "'b(dzi/dt)/Bs, remains approxi-
mately constant. This apparent discrepancy can be rec-
onciled by noting that the entrainment zone is deeper
with weaker stratification.

b. General-structure model predictions
We employed the GSM of Fedorovich and Mironov

(1995) to calculate parameters of entrainment for five
stratifications with N between 0.006 and 0.018 s"1, in-
clusive, in the free atmosphere. The calculated param-
eters were compared with our LES predictions and the
water tank data of Deardorff et al. (1980).
Before showing the comparisons, we would like to

demonstrate and discuss the LES results for the time
evolution of the lower and upper interfaces of the en-
trainment zone, zil and ziu. In Fig. 6, the LES data on
zil and ziu for all 10 simulated CBL cases are shown
together. As a reference, we also show the evolution of
zi from Fig. 3. It is remarkable that all three heights
vary in time almost synchronously. The time series of
ziu is characterized by a larger scatter than those of zil
and zi. This is rather expectable due to the more weakly
defined criterion of determining ziu from the LES data
compared to the criteria for other two heights as dis-
cussed in section 3b. One may also notice that ẑil(t̂) and
ẑi(t̂) are represented fairly well by the 1/2 power laws
in the quasi-stationary stage of entrainment (t̂ ( 100),
while the ẑiu(t̂) distribution reveals a tendency toward
slower growth as time increases. These deviations from
the 1/2 power law apparently affect the time evolution
of the buoyancy increment &b and thus alter the shape
of Ri&b(t̂) from that of Ri'b(t̂). It is worth noting in this
connection that the method of determining the zero-
order buoyancy increment 'b is independent of ziu. This
additionally explains a rather special character of the
Ri&b dependence on t̂ in Fig. 4. A best-fit approximation
of Ri&b(t̂) at t̂ ( 100 yields an empirical power-law
estimate Ri&b 0 t̂0.39.
The above estimate allows an indirect evaluation of

the power-law exponent in the relationship between E
and Ri&b. Indeed, taking Ri&b 0 t̂0.39, ẑi 0 t̂1/2, and E !

(dẑi/dt̂), we obtain E 0 , which is rather dif-"1/3 "1.7ẑ Rii &b
ferent from the corresponding ZOM relationship, E 0

, but fairly close to the relationships E 0 and"1 "3/2Ri Ri'b &b
E 0 observed in a variety of laboratory experi-"7/4Ri &b
ments and extensively discussed in the literature (Turner
1968, 1973; Deardorff et al. 1980; Fernando 1991; Zil-
itinkevich 1991; Stevens and Lenschow 2001). Rela-
tionships between E and Richardson numbers Ri'b, Ri&b,
and RiN have been also directly evaluated from the LES
data. These three relationships are shown together in
Fig. 7. Retrieved relationships between E and Ri'b, and
E and RiN, follow the ZOM predictions fairly well: E
0 and E 0 , see Eq. (17)."1 "1Ri Ri'b N
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FIG. 4. Richardson numbers Ri'b (circles), Ri&b (crosses), and RiN (triangles) as functions of dimensionless time t̂ ! tN for
0.006 s"1 ! N ! 0.018 s"1 (0.001 K m"1 ! d$% /dz ! 0.01 K m"1) retrieved using (a) approximated zi(t) curves and (b)
original zi(t) data (only Ri'b and Ri&b are shown). The dashed lines depict ZOM power-law predictions for Ri'b(t̂) and RiN(t̂).
The solid lines correspond to the 0.39 exponent, which is the best fit for Ri&b(t̂) data in (b).

FIG. 5. Ratio of the buoyancy flux at z ! zi to the surface buoyancy
flux as function of dimensionless time t̂ ! tN for two stratifications
in the free atmosphere; weak: d$% /dz ! 0.001 K m"1 (N ! 0.006
s"1), crosses and strong: d$% /dz ! 0.01 K m"1(N! 0.018 s"1), circles.
The straight line corresponds to the ZOM estimate of the entrainment
ratio "Bi/Bs ! 'b(dzi/dt)/Bs, (see Fig. 1).

In Fig. 8, the LES data and the derived approxi-
mation for E (Ri&b ) are compared with predictions of
the GSM model of Fedorovich and Mironov (1995).
The GSM runs were performed for five different val-
ues of the buoyancy frequency in the free atmosphere.
For the wave-related energy drain at the CBL top, the
Zilitinkevich (1991) parameterization 2- u /(Bsz i ) !
CN (&z i /z il ) 3 was used.3/2RiN
Taking into account the structure of the GSM equa-

tions (Fedorovich and Mironov 1995), one may expect
the GSM solutions for entrainment parameters at suf-
ficiently large t̂ (that also means large Ri&b) to be in-
dependent of N. This universality with respect to N is
demonstrated in Fig. 8, in which five curves corre-
sponding to different N collapse to one curve at Ri&b (
4. The universal solution quite closely follows the LES
prediction for E(Ri&b). In the plot, we also show, for
comparison, laboratory data on E(Ri&b) from the water
tank experiments of Deardorff et al. (1980) with the
CBL developing in the linearly stratified fluid. For rel-
atively large values of Ri&b, when the entrainment in the
quoted experiments was supposedly close to the equi-
librium, our LES data are in a good agreement with the
laboratory results. However, there are some differences
between LES and water tank data with respect to Ri&b.
Possible reasons for these differences will be discussed
in section 5.
Another parameter of entrainment considered within

the GSM framework is the relative entrainment layer
thickness, &zi/zi. The values of &zi/zi retrieved from the
simulated buoyancy profiles are shown in Fig. 9 as func-
tions of three Richardson numbers: Ri'b, Ri&b, and RiN.
The determination of &zi from the LES data is associated
with considerable uncertainties, as discussed in section
3b. This causes relatively large scatter in the presented
relationships, especially in dependences of &zi/zi on
Richardson numbers Ri'b and Ri&b. The latter two pa-
rameters include buoyancy increments'b and &b,which
are determined from LES buoyancy profiles that have
rather large scatter. Nevertheless, one can confidently
identify the behavioral differences between dependenc-
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FIG. 6. Normalized heights of the lower (ẑil ! zil N 3/2, triangles)"1/2Bs

and upper (ẑiu ! ziu N 3/2, crosses) interfaces of the entrainment"1/2Bs

zone, and the inversion heights ẑi ! zi N 3/2 (circles) as functions"1/2Bs

of dimensionless time t̂ ! tN for 0.006 s"1 ! N ! 0.018 s"1 (0.001
K m"1 ! d$% /dz ! 0.01 K m"1). Straight lines correspond to 1/2
power laws.

FIG. 7. Relationships between the dimensionless entrainment rate
E and Richardson numbers Ri'b (circles), Ri&b (crosses), and RiN (tri-
angles) derived from LES for 0.006 s"1 ! N ! 0.018 s"1 (0.001 K
m"1 ! d$% /dz ! 0.01 K m"1). The "1 power-law lines show ZOM
relationships (17) between E, Ri'b, and RiN.

FIG. 8. Dimensionless entrainment rate E as a function of Ri&b.
Curves present calculations based on the GSM model of Fedorovich
and Mironov (1995) with CN ! 0.007 for different N values in the
free atmosphere: N ! 0.008 s"1 (dashed and dotted line), N ! 0.011
s"1 (long-dashed line), N ! 0.014 s"1 (short-dashed line), N ! 0.016
s"1 (dashed and double dotted line), and N ! 0.018 s"1 (solid line).
The LES data for the stratification range 0.006 s"1 ! N ! 0.018 s"1

(0.001 K m"1 ! d$% /dz ! 0.01 K m"1) are shown as circles. Water
tank data of Deardorff et al. (1980) are presented by crosses. Short-
dashed straight lines present "1 and "3/2 power laws discussed in
Deardorff et al. (1980) and Zilitinkevich (1991).

es of &zi/zi on Ri'b and RiN compared to the dependence
of &zi/zi on Ri&b. The latter dependence indicates an
apparently sharper decrease of &zi/zi with growing Ri&b
than in the dependences of &zi/zi on two other Richard-
son numbers.
The relationship between &zi/zi and Ri&b predicted by

the GSM is compared with our LES results and the
laboratory data of Deardorff et al. (1980) in Fig. 10.
All datasets agree fairly well in predicting the general
character of the relationship between &zi/zi and Ri&b.
However, the &zi/zi values obtained in the laboratory are
noticeably smaller that those predicted by the GSM and
retrieved from the LES data. Possible reasons for such
discrepancies will be discussed in section 5.
The quantitative agreement between the GSM and the

LES predictions of the &zi/zi to Ri&b relation is rather
good. It is not clear, however, whether the GSM appro-
priately describes the behavior of &zi/zi at large Ri&b.
One may also notice (see the caption to Fig. 8) that in
order to achieve the agreement between GSM and LES
predictions, the value of CN in the Zilitinkevich (1991)
parameterization for the wave-related energy flux must
be taken rather small.
We conclude our evaluation of the GSM by compar-

ing its predictions with the LES and water tank data on
the relationship between &zi/zi and the dimensionless
entrainment rate E, shown in Fig. 11. The GSM pre-
diction is in good overall agreement with the LES and
water-tank data except for small E, in which case the
growth of &zi/zi with E is slightly faster than simulated

numerically and observed in the laboratory. Relation-
ships predicted by all employed data sources are well
within the power-exponent range considered in Nelson
et al. (1989) for the description of equilibrium entrain-
ment in the atmosphere.
The entrainment relationships retrieved from the LES
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FIG. 9. Relationship between the relative entrainment layer depth
&zi/zi ! (ziu " zil)/zi and Richardson numbers Ri'b (circles), Ri&b
(crosses), and RiN (triangles) derived from the LES for 0.006 s"1 !
N ! 0.018 s"1 (0.001 K m"1 ! d$% /dz ! 0.01 K m"1).

FIG. 10. Relative entrainment layer depth &zi/zi ! (ziu " zil)/zi as
a function of Ri&b. For notation, see Fig. 8. Short-dashed straight lines
present "1/2 power law obtained by Boers (1989) from the analysis
of atmospheric data and "1 power law suggested by Deardorff et al.
(1980) based on the laboratory data and predicted by the Zilitinkevich
and Mironov (1992) model.

FIG. 11. Relative entrainment layer depth &zi/zi ! (ziu " zil)/zi as
a function of the dimensionless entrainment rate E. For notation, see
Fig. 8. Short-dashed straight lines correspond to the smallest, 1/4,
and largest, 1, values from the exponent range considered in Nelson
et al. (1989) for conditions of equilibrium entrainment in the atmo-
sphere.

can be employed for evaluation of one more GSM quan-
tity, the so-called entrainment layer stratification param-
eter, which is the ratio of the buoyancy gradient in the
free atmosphere to the overall buoyancy gradient across
the entrainment layer: G ! N 2(&zi/&b). In the GSMs of
Deardorff (1979) and Fedorovich and Mironov (1995),
the shape factors of the buoyancy profile in the entrain-
ment layer are prescribed empirical functions of G. Ex-
pressing G in terms of Ri&b, &zi/zi, and RiN as

2N &z (&z /z )Rii i i N! , (22)
&b Ri&b

and using relationships between Ri&b, &zi/zi, and RiN
retrieved from the LES data (see Fig. 9), we find that
G in the equilibrium entrainment regime is approxi-
mately constant, with an average value of 1.2. This value
is approximately in the middle of theG range considered
by Fedorovich and Mironov (1995).

5. Discussion and conclusions
We have shown that parameters of entrainment and

the relationships between them depend on the bulk mod-
el framework within which they are specified. Accord-
ing to our understanding, the inconsistency of entrain-
ment relationships obtained in a number of previous
LES studies and derived from experimental data is a
result of misinterpretation of the entrainment relation-
ships and misusing the formalism of a given bulk model.
When interpreted strictly within the ZOM framework,

our LES data on the equilibrium convective entrainment
provide a clear support for the basic entrainment rela-
tionship of the ZOM: ERi'b ! C1 with C1 ! 0.17. In
order to satisfy the ZOM formalism, the buoyancy in-

crement 'b ! (g/$%0)'$% in this relationship should be
taken at the inversion height zi, that is, the height of
the buoyancy flux minimum within the entrainment lay-
er. Assigning zi to some other height (for instance, to
the height of the maximum buoyancy gradient, as done
in Sullivan et al. 1998) or taking '$% equal to the overall
virtual potential temperature increment across the en-
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trainment layer, &$%, are not consistent with the ZOM
approach and may lead to misinterpretation of entrain-
ment relationships. Conversely, one should not expect
the ZOM to correctly predict the entrainment ratio in
terms of the actual buoyancy flux of entrainment,

| i. We have shown in section 4a that the ratiow1b1
| i/Bs strongly depends on N, while "'b(dzi/dt)/Bsw1b1

is essentially constant.
This discrepancy between "'b(dzi/dt) and | iw1b1

was interpreted in van Zanten et al. (1999) as a defi-
ciency of the ZOM approach. We believe, however, that
both "'b(dzi/dt) and | i are rather sensible quan-w1b1
tities for the characterization of entrainment. Onemerely
has to use each of these quantities within a relevant
model context. Van Zanten et al. (1999) found the value
of 'b(dzi/dt)/Bs in their LES experiments to be consid-
erably larger than 0.2. We speculate that this could be
a result of the miscalculation the zero-order temperature
jump '$% from the LES data.
Our LES data have also shown that the ZOM ap-

proximation 'zi ! 2(zi " zil), which originates from
the geometric formula of Stull (1976a), is not a good
estimate of the actual entrainment layer thickness &zi.
As shown in Fig. 6, in the equilibrium entrainment re-
gime, 'zi/zi is roughly constant, which is in agreement
with the Stull (1976a) geometric considerations, while
&zi/zi changes (although slowly) with time. The LES
data suggest that in the considered entrainment regime,
the dimensionless entrainment layer stratification pa-
rameter G ! N 2(&zi/&b) is a constant of about 1.2.
The reevaluation of the Fedorovich and Mironov

(1995) GSM of entrainment has shown that, if the wave-
related energy drain is parameterized according to Zil-
itinkevich (1991), the GSM is able to predict general
features of relationships between &zi/zi, Ri&b, and E.
However, the actual concept of the energy drain in the
GSM needs a revision. The GSM runs performed have
demonstrated that, with -u ! -(ziu) ! 0 (i.e., without
any parameterization for energy transport by waves),
the modeled value of &zi/zi does not decrease with grow-
ing Ri&b as water tank and LES data predict, but tends
to a constant value (see also Fig. 12 in Fedorovich and
Mironov 1995). In order to match the LES and water
tank data, the value of the free parameter CN in the GSM
has to be taken unrealistically small (0.007), which in-
dicates a deficiency of the employed scaling for the
energy drain. This suggests that the actual physical
mechanism represented by the discussed parameteri-
zation is not the flux of energy spent on the generation
of internal waves above the CBL (the LES data show
that transport of energy at z ( ziu is negligibly small in
the whole range of N values considered), but rather the
damping of the entrainment zone growth by strong strat-
ification at large Ri&b (or large t̂), as demonstrated in
Fig. 8.
The relationship between &zi/zi and Ri&b retrieved

from LES data was found to be closer to the &zi/zi 0

relationship retrieved from the atmospheric data"1/2Ri &b
by Boers (1989) than to the &zi/zi 0 relationship"1Ri &b
that follows from the model of Zilitinkevich and Mi-
ronov (1992) for the temperature profile in the ther-
mocline. A similar dependence, &zi/zil 0 (note that"1Ri &b
it is written in terms of zil, not zi), was suggested by
Deardorff et al. (1980) based on their water tank data
(see the discussion below).
Following the arguments of Zilitinkevich and Miron-

ov (1992) and Otte and Wyngaard (2001) regarding the
governing length scale lb of turbulence in the entrain-
ment layer (the so-called buoyancy length scale), one
may assume that lb 0 wb(&b/&zi)"1/2, where wb is the
turbulence velocity scale in the entrainment layer. A
similar formula for lb was earlier obtained by Schumann
and Gertz (1995) and later employed by Sorbjan (2001).
Adopting, for free-convection conditions, wb 0 w* (Otteand Wyngaard 2001) and taking after Zilitinkevich and
Mironov (1992) &zi/zi 0 ! /(&b · zi), we find"1 2Ri w&b *that the governing turbulence length scale in the en-
trainment layer is proportional to its depth: lb 0 &zi. Our
LES results suggest that turbulence length scale in the
entrainment layer is additionally a function of hydro-
static stability in the entrainment layer. Indeed, if we
combine dependence lb 0 w*(&b/&zi)

"1/2 with the LES-
derived relationship &zi/zi 0 , where m is definitely"mRi &b
smaller than 1 (actually, it is rather close to 1/2, as seen
in Fig. 10), we will come up with lb 0 &zi( ) so(m"1)/2Ri&b
that the turbulence length scale in the entrainment layer
decreases with growing inversion strength. Because RiN
grows with Ri&b as a power function with the exponent
smaller than 1 (see Fig. 9), the scale lb also monoton-
ically decreases with RiN. Such a dependence on RiN is
in a good qualitative agreement with observed differ-
ences between the mean virtual potential temperature
profiles in the entrainment layer at small and large N
(see Fig. 2). However, a conceptual model that could
explain the retrieved relationships between parameters
of entrainment in the general case still has to be de-
veloped. It should be also taken into account that LES
predictions of the entrainment zone thickness at large
N could be not as reliable due to insufficient perfor-
mance of employed subgrid closure in the flow regions
with strong stable stratification.
In the water tank experiments of Deardorff et al.

(1980), whose data are extensively used to verify models
of entrainment, the inversion height zi was defined as
the height of the most negative buoyancy flux, and the
upper and lower boundaries of the entrainment zone (zil
and ziu in our notation) were specified, respectively, as
the height where the ‘‘turbulent heat flux first reaches
zero’’ (zil) and as the height above zi ‘‘beyond which
the buoyancy flux and its vertical derivative remain van-
ishingly small’’ (ziu). In the analysis of our LES data
(see section 3b) we tried to follow these definitions as
closely as possible. Except for the cases in which we
calculated derivatives from the time series (i.e., for the
evaluation of E), we tried to avoid the smoothing of the
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LES output data. Nevertheless, due to arbitrary inter-
pretation of the notion of ‘‘vanishingly small,’’ we found
values of &zi/zi in our LES to be systematically larger
than in the experiments of Deardorff et al. (1980), al-
though the general trends in our &zi/zi data were the
same as in the water tank CBL. It should be noted in
this connection that the largest differences between the
LES and water tank data are observed in the &zi/zi versus
Ri&b relationship (see Fig. 10) when both retrieved pa-
rameters are affected by the uncertainties in &zi.
The E 0 relationship, which is rather close to"3/2Ri &b

the relationship predicted by LES in our study, was
already considered by Deardorff et al. (1980) in their
analyses of water tank data. This relationship was also
observed in earlier laboratory experiments discussed by
Turner (1968, 1973). However, Deardorff et al. (1980)
eventually gave preference to the E 0 dependence."1Ri &b
Following Zilitinkevich (1991), one may notice that in
the dataset from the Deardorff et al. (1980) experiments,
the relationship E 0 better fits the data for the cases"1Ri &b
of entrainment in almost neutrally stratified fluid, while
E 0 is a better approximation for the CBL growing"3/2Ri &b
in a strongly stratified fluid. This observation, to a cer-
tain extent, supports our findings. Small Ri&b numbers
in our simulations correspond to small t̂ values, which
are associated with either mean weak stratification
above the CBL (small N) or with early stages of en-
trainment (small t), when the equilibrium stage of en-
trainment is not yet achieved. The graph in Fig. 7 shows
that at Ri&b 3 10 (at t̂ 3 100), the dimensionless en-
trainment rate E, indeed, decreases with Ri&b rather
slowly, more like as compared to the equilibrium"1Ri &b
regime at Ri&b ( 10 (t̂ ( 100), where the exponent in
the power law is close to "3/2.
The deviation from the "1 power law in the E(Ri&b)

dependence was also observed in the LES study of Sul-
livan et al. (1998). In that study, both E and Ri&b were
calculated with zi taken as the height of the maximum
buoyancy gradient in the entrainment zone. The Sullivan
et al. (1998) data, as well as our LES results, show that
this height systematically exceeds the height of the
buoyancy flux minimum, which was taken as the in-
version height in Deardorff et al. (1980), by 10 to 20
percent. This might, to a certain extent, modify the E
dependence on Ri&b (note that larger zi values result in
smaller E and larger Ri&b), and could be a reason for
systematically smaller entrainment rates in the LES of
Sullivan et al. (1998) in comparison with the water tank
data of Deardorff et al. (1980).
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S. J. Caughey, and C. J. Readings, 1976: Turbulence structure
in a convective boundary layer. J. Atmos. Sci., 33, 2152–2169.

Kitaigorodskii, S. A., 1970: The Physics of Air–Sea Interaction (in
Russian). Gidrometeoizdat, Leningrad, 284 pp. [English trans-
lation: Israel Program for Scientific Translation, 236 pp., 1973.]

——, and Yu. Z. Miropolsky, 1970: On the theory of open ocean
active layer. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 6, 178–
188.

Lenschow, D. H., 1998: Observations of clear and cloud-capped con-
vective boundary layers, and techniques for probing them. Buoy-
ant Convection in Geophysical Flows, E. J. Plate et al., Eds.,
Kluwer, 185–206.

Lewellen, D. C., and W. S. Lewellen, 1998: Large-eddy boundary
layer entrainment. J. Atmos. Sci., 55, 2645–2665.

Lilly, D. K., 1968: Models of cloud-topped mixed layers under a
strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292–309.

——, 2002: Entrainment into mixed layers. Part I: Sharp-edged and
smoothed tops. J. Atmos. Sci., 59, 3340–3352.

Lock, A. P., and M. K. MacVean, 1999: A parameterization of en-
trainment driven by surface heating and cloud-top cooling.
Quart. J. Roy. Meteor. Soc., 125, 271–300.

McGrath, J. L., H. J. S. Fernando, and J. C. R. Hunt, 1997: Turbulence,
waves and mixing at shear-free density interfaces. Part 2. Lab-
oratory experiments. J. Fluid Mech., 347, 235–261.

Mironov D. V., S. D. Golosov, S. S. Zilitinkevich, K. D. Kreiman,
and A. Yu. Terzhevik, 1991: Seasonal changes of temperature
and mixing conditions in a lake.Modelling Air–Lake Interaction:

Physical Background, S. S. Zilitinkevich, Ed., Springer-Verlag,
74–90.

Nelson, E., R. Stull, and E. Eloranta, 1989: A prognostic relationship
for entrainment zone thickness. J. Appl. Meteor., 28, 885–903.

Nieuwstadt, F. T. M., and R. A. Brost, 1986: Decay of convective
turbulence. J. Atmos. Sci., 43, 532–546.

Otte, M. J., and J. C. Wyngaard, 2001: Stably stratified interfacial-
layer turbulence from large-eddy simulation. J. Atmos. Sci., 58,
3424–3442.

Plate, E. J., 1971: Aerodynamic Characteristics of Atmospheric
Boundary Layers. U.S. Atomic Energy Commission, 190 pp.

Schumann, U., and T. Gerz, 1995: Turbulent mixing in stably stratified
shear flows. J. Appl. Meteor., 34, 33–48.

Sorbjan, Z., 1996: Effects caused by varying the strength of the
capping inversion based on a large eddy simulation model of
the shear-free convective boundary layer. J. Atmos. Sci., 53,
2015–2024.

——, 2001: An evaluation of local similarity at the top of the mixed
layer based on large-eddy simulations. Bound.-Layer Meteor.,
101, 183–207.

Stevens, B., and D. H. Lenschow, 2001: Observations, experiments,
and large eddy simulation. Bull. Amer. Meteor. Soc., 82, 283–
294.

Stull, R. B., 1973: Inversion rise model based on penetrative con-
vection. J. Atmos. Sci., 30, 1092–1099.

——, 1976a: Mixed-layer depth model based on turbulent energetics.
J. Atmos. Sci., 33, 1268–1278.

——, 1976b: Internal gravity waves generated by penetrative con-
vection. J. Atmos. Sci., 33, 1279–1286.

——, and E. W. Eloranta, 1984: Boundary Layer Experiment 1983.
Bull. Amer. Meteor. Soc., 65, 450–456.

Sullivan, P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D.
Mayor, 1998: Structure of the entrainment zone capping the con-
vective atmospheric boundary layer. J. Atmos. Sci., 55, 3042–
3064.

Tennekes, H., 1973: A model for the dynamics of the inversion above
a convective boundary layer. J. Atmos. Sci., 30, 558–567.

Turner, J. S., 1968: The influence of molecular diffusivity on turbulent
entrainment across a density interface. J. Fluid Mech., 33, 639–
656.

——, 1973: Buoyancy Effects in Fluids. Cambridge University Press,
367 pp.

van Zanten, M. C., P. G. Duynkerke, and J. W. M. Cuijpers, 1999:
Entrainment parameterization in convective boundary layers de-
rived from large eddy simulations. J. Atmos. Sci., 56, 813–828.

Willis, G. E., and J. W. Deardorff, 1974: A laboratory model of the
unstable planetary boundary layer. J. Atmos. Sci., 31, 1297–
1307.

Wyngaard, J. C., and R. A. Brost, 1984: Top-down and bottom-up
diffusion of a scalar in the convective boundary layer. J. Atmos.
Sci., 41, 102–112.

Zeman, O., and H. Tennekes, 1977: Parameterization of the turbulent
energy budget at the top of the daytime atmospheric boundary
layer. J. Atmos. Sci., 34, 111–123.

Zilitinkevich, S. S., 1975: Comments on ‘‘A model for the dynamics
of the inversion above a convective boundary layer.’’ J. Atmos.
Sci., 32, 991–992.

——, 1991: Turbulent Penetrative Convection. Avebury Technical,
179 pp.

——, and J. W. Deardorff, 1974: Similarity theory for the planetary
boundary layer of time-dependent height. J. Atmos. Sci., 31,
1449–1452.

——, and D. V. Mironov, 1992: Theoretical model of the thermocline
in a freshwater basin. J. Phys. Oceanogr., 22, 988–996.

——, E. E. Fedorovich, and M. V. Shabalova, 1992: Numerical model
of a non-steady atmospheric planetary boundary layer, based on
similarity theory. Bound.-Layer Meteor., 59, 387–411.


