
A fast, flexible, approximate technique for computing

radiative transfer in inhomogeneous cloud fields

Robert Pincus
NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA

Howard W. Barker
Environment Canada, Downsview, Ontario, Canada

Jean-Jacques Morcrette
European Centre for Medium-Range Weather Forecasts, Reading, UK

Received 16 December 2002; revised 29 April 2003; accepted 15 May 2003; published 2 July 2003.

[1] Radiative transfer schemes in large-scale models tightly couple assumptions about
cloud structure to methods for solving the radiative transfer equation, which makes these
schemes inflexible, difficult to extend, and potentially susceptible to biases. A new
technique, based on simultaneously sampling cloud state and spectral interval, provides
radiative fluxes that are guaranteed to be unbiased with respect to the benchmark
Independent Column Approximation and works equally well no matter how cloud
structure is specified. Fluxes computed in this way are subject to random, uncorrelated
errors that depend on the distribution of cloud optical properties. Seasonal forecasts,
however, are not sensitive to this noise, making the method useful in weather and climate
prediction models. INDEX TERMS: 1694 Global Change: Instruments and techniques; 3337
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1. Introduction: Radiative Transfer
in Large-Scale Models

[2] Global weather forecast and climate models predict
the evolution of the atmosphere by computing changes in
the energy, momentum, and mass budgets at many levels in
each of many columns around the globe. One term in the
energy budget is the local heating or cooling due to transfers
of radiation, which is derived from the radiative fluxes
averaged across each model grid cell. Computing these
fluxes in a large-scale model (LSM) is in principle a two-
part process. The LSM must first determine the state of the
atmosphere within each grid cell, including the horizontal
and vertical distributions of clouds, aerosols, and optically
active gases, then give this description to a radiative transfer
solver, which computes fluxes at each level.
[3] The description of clouds in current LSMs is quite

simple: Most predict the proportion of each grid cell filled
with cloud (the ‘‘cloud fraction’’) and the mean in-cloud
condensate concentration, then prescribe vertical structure
using simple, fixed rules known as overlap assumptions.
This leads to a relatively small number of possible cloud
configurations within each column. In nature, though,
domains the size of LSM grid cells often contain clouds

with substantial horizontal variability [e.g., Barker et al.,
1999; Pincus et al., 1999; Rossow et al., 2002] and
complicated vertical structure [e.g., Hogan and Illingworth,
2000; Mace and Benson-Troth, 2002]. Unresolved subgrid-
scale variability impacts radiative fluxes as well as micro-
physical process rates [Pincus and Klein, 2000], so cloud
schemes are now emerging that address this structure either
parametrically [Cusack et al., 1999; Tompkins, 2002] or
explicitly [Grabowski and Smolarkiewicz, 1999; Khairout-
dinov and Randall, 2001].
[4] Domain-average fluxes in variable clouds can be

determined quite accurately using the plane-parallel inde-
pendent column approximation (ICA) by averaging the flux
computed for each class of cloud in turn [Cahalan et al.,
1994; Barker et al., 1999]. Unfortunately, the ICA is far too
computationally expensive when the number of cloud states
is even moderately large. Radiative transfer is time con-
suming because fluxes and heating rates are broadband
quantities that must be integrated over many spectral
intervals: A heating rate profile in a single column is, in
fact, the result of many narrowband calculations.
[5] The impracticality of the ICA has inspired a variety of

computational shortcuts. Simple representations of over-
lapping homogeneous clouds, for example, can be treated
by weighting clear-and cloudy-sky fluxes [Morcrette and
Fouquart, 1986]. A variety of methods exist to compute
domain-averaged radiative fluxes for internally variable
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clouds; all invoke restrictive assumptions about the nature
of the variability and link layers in the vertical with further
ad hoc assumptions [e.g., Stephens, 1988; Oreopoulos and
Barker, 1999; Cairns et al., 2000].
[6] What existing radiative transfer schemes have in

common is an intimate coupling between assumptions about
cloud structure and methods for computing radiative trans-
fer. This is an unnatural marriage, since cloud structure and
radiative transfer are conceptually distinct, and leads to a
variety of problems. It is difficult to ensure consistency, for
example; radiative fluxes computed using different imple-
mentations of the same overlap assumptions may differ
substantially from each other and from benchmark calcu-
lations [Barker et al., 2003]. More importantly, weaving
assumptions about cloud structure into the fabric of radia-
tive transfer solvers makes these codes hard to extend or
generalize. Large-scale models that provide estimates of
subgrid-scale variability will require accurate, flexible radia-
tive transfer solvers. It seems very unlikely that small
modifications to existing, highly particular treatments of
clouds and radiation will be up to the task.
[7] This paper describes a computationally efficient tech-

nique for computing domain-averaged broadband radiative
fluxes in vertically and horizontally variable cloud fields of
arbitrary complexity. The method makes random, uncorre-
lated errors in estimates of radiative quantities, but the
expectation value of these estimates is completely unbiased
with respect to the ICA. In the sections that follow we
describe the method, quantify the noise it produces, and
demonstrate that random errors of this magnitude do not
affect forecasts made by a large-scale model. Finally, we
describe a variety of model formulations in which the
technique may be useful.

2. Monte Carlo Integration of the Independent
Column Approximation

2.1. Conceptual Background

[8] Imagine a domain R several tens or hundreds of
kilometers in extent within which the three-dimensional
distribution of cloud optical properties is known exactly.
The true domain-averaged broadband flux hFi at some level
is an integral over wavelength l and horizontal position

hFi ¼
Z

S lð Þ
Z Z

R

F3D x; y;lð Þdxdy

8<
:

9=
;dl ð1Þ

where the weighting S(l) in each spectral interval dl
depends on the incoming spectral flux and F3D denotes
fluxes computed accounting for three-dimensional radiative
transfer. For large-scale calculations net horizontal transfers
of radiation can be neglected, and hFi can be approximated
with the ICA as

hFi � hFICAi ¼
Z

S lð Þ
Z Z

R

F1D x; y;lð Þdxdy

8<
:

9=
;dl ð2Þ

where F1D indicates fluxes computed using one-dimen-
sional radiative transfer theory.

[9] Radiative fluxes are typically much more uniform in
clear skies than in clouds, so we partition the domain into
clear and cloudy portions and perform a single calculation
for the clear sky. Furthermore, because each x, y location is
treated independently, we may write equation (2) as an
integral over the distribution p(s) of possible states s of the
cloudy atmosphere:

hFICAi ¼ 1� Acð Þ
Z

S lð ÞFclr
1D lð Þdl

þAc

Z
S lð Þ

Z
p sð ÞF1D s;lð Þds

� 	
dl: ð3Þ

where Ac represents vertically projected cloud fraction.
Finally, the spectral integration in equation (3) is approxi-
mated by discrete sums with potentially unequal weights w:

hFICAi ¼ 1� Acð Þ
PK
k

w lkð ÞS lkð ÞFclr
1D lkð Þ

þ Ac

XK
k

w lkð ÞS lkð Þ
XJ
j

p sj
� 

F1D sj;lk

� 

¼ 1� Acð ÞhFclri þ AchFcldi ð4Þ

Equation (4) is general and applies to any method of solving
the radiative transfer equation (e.g., two-stream solutions or
adding-doubling). The spectral intervals may be thought of
as bands [e.g., Slingo, 1989] or as the quasi-monochromatic
intervals in a k distribution. It is the nested sum in the last
term in equation (4) that makes the ICA impractical in large-
scale models. Values of K in typical k distribution schemes
may be of order 50–100 [Fu and Liou, 1994], so even 10
possible cloud states lead to an impractical 500–1000
multilayer radiative transfer calculations per LSM column.
[10] In large-scale models, equation (4) applies to indi-

vidual grid cells, and the average is over all states s implied
by the model variables in each column. If the model predicts
cloud fraction and mean in-cloud condensate in each
column, for example, these cloud states and their associated
probabilities p(s) can be determined by enumerating all the
possibilities implied by the model variables and additional
overlap assumptions [e.g., Collins, 2001]. We describe other
ways in which s and p(s) might be chosen in section 6 and
seek here a computationally efficient way to solve or
approximate equation (4) given an arbitrarily complicated
set of cloud states.

2.2. Heart of the Method

[11] The full ICA calculation of cloudy-sky flux hFcldi is
a two-dimensional integral, with wavelength varying in one
dimension and cloud state in the other. Rather than com-
puting the contribution of every cloud state to every
wavelength interval, we approximate hFcldi by choosing a
cloud state at random for each spectral interval:

hFcldi �
XK
k

w lkð ÞS lkð ÞF1D srnd ;lkð Þ ð5Þ
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so that the flux in spectral interval k is computed for a cloud
state srnd chosen at random with probability p(s) from the
distribution of possible states within the LSM column.
Equation (5) is, in effect, a Monte Carlo integration of the
ICA, so we refer to equation (5) as the McICA.
[12] If only a single cloud state exists within a column, the

McICA and ICA are equivalent. Direct application of
equation (5) requires K cloudy-sky calculations per domain,
so it is no more expensive than a broadband calculation for a
single column. This procedure will, of course, introduce
sampling error into each estimate of hFcldi, but that error is
guaranteed to be random and, in the limit of many calcu-
lations, can be shown to have zero mean bias. The questions,
then, are how big these errors are likely to be and whether
random noise of this magnitude will impact weather or
climate forecasts.

3. How Much Error is Introduced by Sampling
the ICA?

[13] If the three-dimensional distribution of cloud prop-
erties in a domain (i.e., an LSM grid column) is known
perfectly, accurate domain-averaged fluxes can be comput-
ed with the ICA. To assess the amount of noise introduced
by the McICA (as opposed to any errors introduced in the
specification of cloud structure), we compare broadband
fluxes and heating rates as computed by the ICA and
McICA in domains in which cloud structure is known
explicitly. We seek an upper bound on the amount of noise
introduced by McICA, so we choose domains containing
very complicated clouds.
[14] We make our tests on 120 cloud fields generated at

5-min intervals by a two-dimensional cloud-resolving
model simulation of a tropical squall line [Fu et al.,
1995]. The simulations have a horizontal grid spacing of
1 km, a domain size of 512 km, and 35 layers on a
stretched grid, and over the course of the simulation
produce a wide variety of ice and liquid clouds. We
compute radiative transfer using a two-stream solver,
obtaining cloud and gas optical properties in each of 31
spectral intervals in the shortwave and 46 in the longwave
(J. Li, personal communication, 2002). The solar zenith
angle is fixed at 45�, and 100 McICA estimates are
calculated for the first 256 km of each domain (a choice
between the grid sizes of current climate and numerical
weather prediction models, and one to which our results are
not particularly sensitive). This yields a distribution of
McICA errors for each scene, as well as a distribution of
errors for the collection of scenes taken as a whole, which
allow us to estimate the likely magnitude of the error in a
single application of the McICA relative to the benchmark
ICA calculation.
[15] The clouds in this simulation are vertically extensive

and subject to large amounts of shear, so more than 80% of
the scenes exhibit Ac > 85%, with most having substantial
variability in optical thickness. Scene-by-scene standard
deviations of McICA errors in net surface flux (Figure 1,
top panel) are distributed about 105 W m�2, which is
roughly the same as the standard deviation of all the errors
taken as a single population (solid line). This relatively large
error, about 10% of the incident solar flux, is caused by
sampling errors in both absorption and transmission in the

atmosphere. Within the atmosphere itself, McICA errors are
smaller. The bottom panel shows the joint probability
distribution of the standard deviation of errors in layer-by-
layer heating rates and the cloud fraction within each layer,
along with the standard deviation of errors computed from
all layers in each cloud fraction interval. Errors in fluxes
computed at one layer affect the flux incident on other
layers, so some cloud-free layers show variability in fluxes
computed with the McICA. Errors in heating rate generally
increase with cloud fraction, as might be expected from
equation (4). In this data set 90% of the layers are less than

Figure 1. Errors introduced by the Monte Carlo integra-
tion of the independent column approximation (McICA) in
calculations of (top) surface fluxes and (bottom) heating
rates. For each of 120 cloud fields over the life of a tropical
squall line we compare a single benchmark ICA calculation
to 100 separate estimates made using an implementation of
the McICA. The standard deviation of these differences lets
us estimate the error that might be expected in a single
application of the McICA. At the surface this error is
roughly 105 W m�2 or 10% of the solar radiation incident at
the top of the atmosphere, though errors for individual
scenes may be larger or smaller by about 40 W m�2. The
typical error in layer-by-layer heating rates increases with
cloud fraction, as the joint probability distribution indicates.
(Note that contour levels are logarithmic.) Solid lines in
both panels show the standard deviation of errors for all
scenes lumped together.
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40% cloudy, so we cannot determine how the error behaves
at larger values of cloud fraction.

4. Does Random Noise in Radiative Forcing
Affect Forecast Skill?

[16] The McICA introduces substantial random noise into
individual flux and heating rate calculations, and if this
noise degrades the model’s forecasts, the McICA is unten-
able. However, several factors suggest that large-scale
models can digest substantial random noise without ill
effects. Experience with ensemble prediction systems shows
that the temporal and spatial autocorrelation of random
perturbations strongly influences any forecast changes [Buz-
zia et al., 1999], and the noise introduced by McICA
relative to the benchmark calculation is completely uncor-
related between calculations (more exactly, it is correlated
perfectly up to the temporal and spatial resolution of the
radiative transfer calculations and is uncorrelated at longer
and larger scales). Furthermore, radiative heating is usually a
small term in an LSM’s atmospheric energy budget, so short-
term forecasts are not particularly sensitive to radiation
calculations, and the mean error decreases with repeated
application. This implies that noise in radiative fluxes may
not affect short-term forecasts, while accuracy in fluxes
computed over the long term should ensure accurate climatic
predictions.
[17] We test the feasibility of using the McICA opera-

tionally by introducing uncorrelated random noise into the
heating rates and surface fluxes in a prediction model. We
then compare the resulting forecasts with those made using
the standard radiation scheme and with forecasts in which
the radiative transfer calculation is perturbed in a small but
systematic manner. We build three ensembles of seasonal
forecasts at a resolution of TL95 L60 using the European
Centre for Medium-Range Weather Forecast’s cycle 25R1
prediction model. Each ensemble contains 30 members
initialized from the analysis on each day of April 2001.
The control ensemble uses the standard model configura-
tion. In a second ensemble we systematically increase
particle size in the radiation scheme by a small amount
(1 mm for liquid clouds and 10 mm for ice clouds). In the
final ensemble we introduce a proxy for the noise intro-
duced by McICA. We randomly perturb the heating rates in
each layer at hourly intervals. The magnitude of the pertur-
bation is drawn from a Gaussian distribution with standard
deviation sQnet suggested by the calculations in section 3:

sQnet ¼ 4ac

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

LW þ Q2
SW

q
; ac > 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

LW þ Q2
SW

q
; ac ¼ 0 ð6Þ

where Qnet, QLW, and QSW are the net, longwave, and
shortwave heating rates, respectively, in the layer and ac is
the layer cloud fraction. The perturbation is constant with
height below the last cloudy layer, and the surface flux is
perturbed from its control value by the same proportion as
the heating rate in these layers. We then compare the last 3
months of the forecasts made with systematic and random
perturbations to those made using the control configuration.
[18] Seasonal forecasts made with random noise do not

differ by a statistically significant amount from the control

forecasts, indicating that the model is not sensitive to
uncorrelated noise in radiative fluxes at the levels described
by equation (6). Small systematic perturbations, however,
have an unambiguous impact. We average forecasts of
surface and top-of-atmosphere fluxes, as well as meteoro-
logical quantities such as surface pressure and 500 hPa
heights, over the last 3 months of the simulation of each
ensemble. Differences between the control and randomly
perturbed ensembles are small and distributed randomly in
space, while differences between the control and systemati-
cally perturbed runs are substantially larger in magnitude
and show greater spatial coherence. Student’s t tests
(Table 1) confirm that small systematic changes in the
radiation scheme cause measurable changes in model fore-
casts, but that the noise introduced by McICA is unlikely to
reduce forecast skill.

5. How Might the McICA be Applied in Practice?

[19] Equation (5) can be used directly in current radiation
schemes. In our experience this is easily accomplished by
removing one loop from the radiative transfer routines and
supplying these routines with many columns instead of one.
Large-scale models could make this change today to ensure
consistent application of arbitrary overlap assumptions.
[20] However, a straightforward implementation of equa-

tion (5) has several drawbacks. If the number of bands is
small, the random errors in each column calculation may be
quite large. Furthermore, randomly chosen individual col-
umns do not contribute equally to the final flux calculation,
which might slow convergence of the McICA. Rather than
doing the spectral interval as a weighted sum, it may be
preferable to compute the spectral integral as an unweighted
sum of a number of quasi-monochromatic calculations
whose wavelengths are chosen randomly (but, again,
according to the correct probability). This represents a
completely Monte Carlo approach to both spectral and
cloud state integration.
[21] Random error in a given McICA calculation depends

on the number and variety of cloud states in the domain.
One benefit of Monte Carlo integration is that integration
uncertainty estimates for each quantity (in this case, surface
flux or the heating rate at each level) can be computed. The
McICA may be implemented by dividing an initial calcu-
lation of M quasi-monochromatic calculations into N

Table 1. Percentage of Area Where the Student’s t Test Indicates

Differences Between Control and Perturbed Ensembles of Simula-

tions (3-Month Averages) That Are Significant at the 97.5%

Confidence Levela

Quantity
Random

Perturbations
Systematic
Perturbations

Top-of-atmosphere net longwave flux 3.66 28.78
Top-of-atmosphere net shortwave flux 2.80 54.99
Surface net longwave flux 3.03 13.91
Surface net shortwave flux 2.82 45.61
Surface pressure 1.64 17.77
500 hPa geopotential 2.49 18.67

aRandom samples drawn from the same population are expected to be
statistically different at the 97.5% level over 2.5% of their area when
ensembles are large. Model forecasts are sensitive to even small systematic
changes in radiative calculations but are unaffected by random, uncorrelated
noise as would be introduced by McICA.
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batches. The uncertainty in the McICA estimate can then be
computed as s=

ffiffiffiffi
N

p
, where s is the standard deviation of the

N estimates. If this uncertainty is too large, additional
calculations can be made ‘‘on the fly’’ until the error is
sufficiently small.
[22] The McICA can also be used to sample temporal or

spatial variability currently resolved by a large-scale model
but neglected in radiative calculations. The current version
of the ECMWF forecast model, for example, computes
cloud properties every 15 min but radiative heating and
cooling rates only every 3 hours (after the first 12 hours
[Morcrette, 2000]). An alternative would be to compute
radiative fluxes each time cloud properties are updated (12
times as often as presently) using a randomly chosen one-
twelfth of the k values and to apply heating rates computed
as a running average over the last 3 hours. Similarly, models
that compute radiation at a coarser spatial resolution than
cloud properties might use the McICA to sample the
variability between grid cells.

6. Implications

[23] The McICA completely decouples the processes of
determining cloud structure within a domain from the calcu-
lation of radiative transfer. This has two advantages: The
radiation code can become both simpler and more flexible,
while assumptions about cloud structure can be applied
uniformly to flux and heating rate calculations. Methods
for generating cloud structure may therefore be arbitrarily
complicated, and can be used consistently in all calculations.
[24] We expect that subgrid-scale structure will be most

simply realized in large-scale models by introducing an
interface that provides randomly chosen populations of
profiles from each large-scale model column. This interface
would encapsulate any necessary assumptions, such as
those regarding vertical correlations. Models that predict
cloud fraction and a single value of cloud condensate can
explicitly calculate every possible configuration and its
probability. Statistical cloud schemes [e.g., Tompkins,
2002] could generate columns consistent with the probabili-
ty distribution of condensate predicted within each model
layer, with overlap relationships incorporated by making the
probability of condensate values for one layer conditional
on other layers. If the structure comes from a fine-scale
model embedded within the LSM, the interface would
return columns chosen at random from the cloudy portion
of the domain. We believe this is vastly preferable to the
current state of affairs, in which assumptions about cloud
structure (e.g., the horizontal and vertical distribution of
extinction) are inextricable from radiative transfer solvers.
[25] Until recently, large-scale models have contained

simple representations of cloud structure, and radiative
transfer schemes have focused on computing accurate fluxes
in a small number of well-defined cloud states. However, as
models introduce more complicated cloud distributions, this
exactness will become unaffordable and, in all likelihood,
unattainable. The choice seems to be between precise treat-
ments for demonstrably wrong clouds that converge instantly
to the wrong answer and imprecise radiative transfer for
more correct clouds producing instantaneously noisy com-
putations that converge over time to the correct answer.
Because radiation affects the atmosphere and ocean so

slowly, we suggest that it is better to solve the right problem
approximately than the wrong problem exactly.
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