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Abstract

We use high-resolution 3-dimensional cloud resolving model simulations of deep 

cumulus convection under a wide range of large-scale forcings to evaluate a mass flux 

closure based on boundary layer convective inhibition (CIN) that has previously been 

applied in parameterizations of shallow cumulus convection.  With minor modifications, 

it is also found to perform well for deep oceanic and continental cumulus convection, and 

matches simulated cloud base mass flux much better than a closure based only on the 

boundary layer convective velocity scale. CIN closure maintains an important feedback 

between cumulus base mass flux, compensating subsidence, and CIN that keeps the 

boundary layer top close to cloud base.  For deep convection, the proposed CIN closure 

requires prediction of a boundary-layer mean TKE and a horizontal moisture variance, 

both of which are strongly correlated with precipitation. For our cases, CIN closure 

predicts cloud base mass flux in deep convective environments as well as the best 

possible bulk entraining-CAPE closure, but unlike the latter, CIN closure also works well 

for shallow cumulus convection without retuning of parameters.
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1. Introduction

Large scale general circulation models (GCMs) employ a diverse range of 

parameterizations for shallow – i.e., at most weakly precipitating – and deep – i.e., 

heavily precipitating – cumulus convection.  Most cumulus parameterizations use a mass 

flux approach, which predicts the vertical structure and mass flux of cumulus up- and 

downdrafts in the parameterization. Mass flux schemes are popular because they can 

provide an internally consistent treatment of cloud turbulent mixing and tracer transport, 

and, if coupled to a parameterization of updraft velocity, cumulus microphysics.  In these 

schemes, the cumulus-base updraft mass flux per unit horizontal area in each grid cell 

must be specified using a mass flux closure which relates upward mass flux in the 

cumulus cloud base to model-predicted variables.  A plume or plume ensemble model 

then predicts the vertical structure of mass flux and thermodynamic variables such as 

updraft temperature, liquid water content, and precipitation flux.    

There is still no consensus on the proper approach to mass flux closure.  

Historically speaking, the first closure type was moisture convergence, proposed by Kuo 

(1974) and extended by Anthes (1977) and Molinari (1982).  Under such closure, 

convection develops to balance column-integrated moisture convergence.  Such a balance 

is observed over the tropical oceans on long time-scales. However, on the shorter time 

scales over which convection evolves, moisture convergence closure is unphysical.  This 

is because convection is fundamentally a buoyancy-driven process, and hence must 

develop as a response to local thermodynamic profiles rather than to large-scale fields.  

Furthermore, moisture convergence closure requires ad-hoc assumptions about the 
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storage term in the moisture budget.  For these reasons, moisture convergence closure has 

gradually lost popularity.

Many current deep convective parameterizations use a convective quasi-

equilibrium closure assumption that adjust the cloud-base mass flux to regulate 

convective available potential energy (CAPE) – or an entraining variant of it – in the face 

of destabilization by nonconvective processes.  Arakawa & Schubert (1974), Bechtold et 

al (2001), Zhang and McFarlane (1995), and Fritsch and Chappell (1980) all used 

closures based solely on CAPE.  However, observational and modeling studies (e.g., 

Mapes and Houze 1993, Neggers et al. 2004, Grabowski et al. 2006, Sobel et al. 2004, 

Kuang and Bretherton, 2006) have found CAPE to be poorly correlated with rainfall or 

cloud base mass flux.  Estimates of entraining CAPE — the vertically integrated positive 

buoyancy of cumulus updrafts, also called the cloud work function by Arakawa and 

Schubert (1974) – are observed to be better correlated with tropical oceanic deep 

convective rainfall (e. g. Brown and Zhang 1997).  The Relaxed Arakawa-Schubert 

scheme (Moorthi and Suarez 1992) separately regulates the entraining CAPE of multiple 

cumulus updrafts with a spectrum of assumed entrainment rates.   Entraining-CAPE mass 

flux closure schemes tend to involve many empirically tuned parameters. 

In this paper, we will focus on a third mass flux closure type, which we call 

‘boundary-layer (BL)-based’ closure.  In BL-based closure, the cumulus-base mass flux 

is determined so as to maintain dynamical compatibility between the subcloud turbulent 

boundary layer and the base of the cumulus cloud layer.

Although BL-based closure is not yet widely used in deep cumulus 

parameterizations, previous researchers have proposed different types of BL-based 
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closure in a variety of contexts.  For instance, Raymond (1995), in a study of the TOGA 

COARE West Pacific warm pool intensive observing period, proposed that cloud base 

mass flux is regulated by boundary layer quasi-equilibrium (BLQ), in which the subcloud 

boundary layer equivalent potential temperature θe  is maintained near a constant 

convective threshold value through a balance between the increase of conditional 

instability by surface fluxes and its destruction by low θe convective downdrafts. Such an 

equilibrium may occur in tropical oceanic deep convective regimes.  However, diurnal 

and synoptic-scale variations of BL θe in convective regions over land are too large to be 

consistent with BLQ.  Furthermore, BLQ cannot apply to shallow cumulus convection, in 

which significant downdrafts are not present and the subcloud layer is instead ventilated 

by dry entrainment.

Another BL-based mass flux closure was suggested by Mapes (2000), who 

hypothesized that cloud base mass flux is controlled by the ratio of the kinetic energy of 

turbulent updrafts in the sub-cloud boundary layer to the potential energy barrier that they 

must overcome.  This potential energy barrier is the convective inhibition (CIN), the 

vertically integrated negative buoyancy of the updrafts. In a highly idealized model of 

cumulus convection, he proposed a cloud base mass flux closure of the form 

mcb = Wexp(-kCIN/W2), (1)

where mcb is the cloud base volume flux, W is a measure of the vertical velocity scale of 

typical boundary layer eddies, and k is a constant.  We will refer to this as CIN closure.  

A nice feature of this closure is that it requires no separate convective trigger; if CIN gets 

large, the mass flux turns off.
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Grant and Brown (1999) found that the ratio of cloud base mass flux per unit 

density to the BL convective velocity scale w* = (B0h)1/3, where B0 is the surface 

buoyancy flux and h is the boundary layer depth, was close to 0.03 in several large eddy 

simulations of continuously forced shallow convection.  This demonstrates the tight 

connection between boundary layer turbulence and cloud base mass flux in this situation.  

This is compatible with CIN closure with W ∝ w* if CIN adjusts to be proportional to W2, 

in which case exp(-kCIN/W2) is constant.  We will call this the Grant closure; for use in a 

cumulus parameterization it must be supplemented by a trigger function.

Neggers et al (2009) developed a coupled boundary layer and shallow cumulus 

parameterization that uses a closure that has features in common with CIN closure.  In 

their closure, a weakly entraining test updraft originating in the surface layer is used to 

determine whether any cumulus clouds are possible and if so, to diagnose a cumulus 

layer depth.  The cumulus base updraft fractional area (and hence cumulus base mass 

flux) is proportional to the cumulus layer depth up to a maximum proportional to w*/N, 

where N is an estimated dry static stability at the cloud base h.   In this closure, the test 

parcel cumulus layer depth is used in place of a subcloud layer CIN, N is used in place of 

a transition layer CIN, and updraft velocity is scaled with the convective velocity w*. In 

deep convection, the effects of cold pools can often swamp those of surface fluxes on 

boundary layer properties, as we will show.  The CIN closure defined in equation (1) can 

maintain reasonable cumulus base mass flux even in this case, while that of Neggers et al 

may not.

Many GCMs use separate parameterizations for shallow and deep convection. 

While mass flux-based deep cumulus parameterizations tend to use CAPE and moisture 
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convergence closures, some shallow cumulus parameterizations have used BL-based 

closures.  For instance, Bretherton et al. (2004, hereafter referred to as B04) used a 

shallow cumulus parameterization incorporating CIN closure, basing W on a 

parameterized boundary layer-mean turbulent kinetic energy (TKE), in simulations of the 

subtropical marine stratocumulus to trade cumulus transition.  Kuang and Bretherton 

(2006, hereafter referred to as KB) built further evidence for the utility of CIN closure in 

a simulation of an idealized shallow-to-deep cumulus transition using a cloud resolving 

model (CRM).  Their results suggested that this closure may be applicable to deep 

convection as well as to shallow convection.  However, KB’s simulation never produced 

area-mean precipitation rates exceeding 3 mm d-1.

In this paper, we follow KB in employing CRM simulations to test cloud base 

mass flux closure assumptions.  We extend their analysis to include realistic cases of 

heavily-precipitating oceanic and continental deep convection.  Specifically, we test a 

CIN closure of the form

mcb = c1Wexp(-c2CIN/TKE), (2)

where c1 and c2 are constants to be determined from studies such as this one and the 

vertical velocity scale W may depend on w*, TKE, or both.  The goal is to find a closure 

that reasonably predicts the mass flux in deep continental and oceanic convection as well 

as shallow cumulus convection without changes to any parameters. We also test the 

assumptions behind CAPE closure and the Grant closure.  Section 2 briefly describes our 

CRM and our simulations.  Section 3 explains our analysis methods for evaluating each 

closure, and Section 4 presents our results, which favor a form of CIN closure.  In 

Section 4 we also discuss how CIN closure and a cloud model act together to maintain 
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convective quasi-equilibrium in a layer of cumulus convection. Section 5 summarizes our 

conclusions and some remaining challenges.

2. Simulations

We use several versions of the System for Atmospheric Modeling (SAM) cloud 

resolving model, or CRM (Khairoutdinov and Randall, 2003), for all our studies.  SAM 

uses the anelastic equations, bulk microphysics, and periodic lateral boundary conditions 

with a rigid lid upper boundary condition, applying Newtonian damping in the upper 

model levels.  The model’s prognostic thermodynamic variables are total 

nonprecipitating water content (diagnostically separated into vapor and cloud water/ice 

using temperature and pressure), total precipitating water (rain, snow, and graupel), and 

liquid-ice static energy. 

We use SAM to simulate three well-observed case studies covering a range of 

environments in which cumulus convection occurs. All have been the subject of prior 

CRM studies.  The cases used were taken from the Atmospheric Radiation Measurement 

(ARM) Southern Great Plains campaign, the Kwajalein Experiment (KWAJEX), and the 

Barbados Oceanographic and Meteorological Experiment (BOMEX).  Simulations of 

ARM and BOMEX with earlier versions of SAM are discussed in detail in Khairoutdinov 

and Randall (2003), and Siebesma et al. (2003), respectively, while our KWAJEX 

simulation is the same as that discussed in Blossey et al (2007).  The ARM case features 

summertime, midlatitude continental convection, and includes suppressed and shallow 

convective conditions as well as episodic deep convection.  Our simulation uses a 

subperiod of the original ARM case study, from 18 June to 3 July 1997 (Julian days 170-
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185). The KWAJEX case features continuously forced tropical marine deep convection 

over the west Pacific warm pool, spanning 23 July to 4 September 1999 (Julian days 204-

257).  The BOMEX case is a six-hour simulation of shallow trade cumuli using steady 

forcing derived from observations during 22-23 June 1969.  

Our ARM simulation uses version 6.7 of SAM.  It has a 192x192 km domain, 

with 1 km grid spacing in the horizontal, 96 vertical grid levels, and a vertical grid 

spacing varying from 50-100 m at the lowest levels to 250 m in the free troposphere, with 

larger spacing above the tropopause.  Our KWAJEX simulation uses version 6.3 of SAM, 

a 256x256 km grid, 1 km grid spacing, and has 64 vertical grid levels with a vertical grid 

spacing ranging about 100 m at lower levels, 400 m in the free troposphere, and larger 

spacing above.  Our BOMEX simulation uses version 6.6 of SAM, a 192x192x96 grid, 

and 40 m grid spacing in both the horizontal and vertical. 

For each simulation, SAM saves three dimensional volume snapshots of 

temperature, horizontal and vertical winds, and water content.  These snapshots are 

archived every hour for ARM, every six hours for KWAJEX, and every twenty minutes 

for BOMEX.  The ARM and KWAJEX archival times are comparable to the time scales 

on which deep convection evolves over land and tropical oceans, as large-scale forcings 

over a continental environment change much more rapidly than they do over a tropical 

ocean.  The BOMEX snapshots can be regarded as statistically independent samples of a 

quasi-steady shallow cumulus cloud field. Time and horizontal averages of numerous 

other quantities, including rainfall and surface fluxes, are saved every hour in ARM and 

KWAJEX and every ten minutes in BOMEX.   To minimize spinup transients, we do not 
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analyze the first day of the ARM and KWAJEX simulations or the first three hours of the 

BOMEX simulations.

3. Methods

We define cumulus (Cu) updrafts as saturated updrafts with vertical velocity w > 

0.5 m s-1.  This definition accounts for most of the saturated updraft mass flux while 

filtering out gravity wave-induced upward motion of saturated parcels.  Our overall goal 

is to test how well particular closure assumptions predict the cumulus (Cu)-base updraft 

mass flux.  In this section we explain how we estimate a representative mean Cu-base 

height and the mean properties of air rising through Cu-bases.  In order that our results 

are relevant to the cumulus parameterization problem, we ultimately need to predict this 

information from horizontal domain-mean fluxes and profiles.   However, we also 

introduce some intermediate predictors that help better test particular parameterization 

assumptions. Table 1 summarizes our key diagnostics.

a. Estimating the Cu-base

This analysis will be restricted to surface-based cumulus convection, in which the 

Cu-bases are fed by updrafts from a turbulent subcloud layer extending down to the 

surface.  Our goal in this section is to use domain-mean statistics to estimate a domain-

mean Cu-base that is consistent with the CRM cloud statistics. 

We use a lifting condensation level (LCL) to estimate Cu-base.  The boundary 

layer is inhomogeneous in its thermodynamic quantities, so we must make a choice of 

which “test parcel” we use to calculate this LCL.  Specifically, we must choose its 
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origination height or height range and how much its thermodynamic properties differ 

from the horizontal average at that height.  

We approached this problem empirically.  Through trial and error, we found in all 

three simulations that reversibly lifted air originating from the grid level nearest 300 m, 

having the horizontal mean temperature and a one horizontal standard deviation “spike” 

in water vapor mixing ratio qv at its starting level, has a temperature and total water 

content at our Cu-base that are very similar those of conditionally sampled cloud base Cu 

updrafts.  Without this qv spike, our estimated Cu-base is too high, illustrating that, in the 

absence of cold pools, Cu updrafts tend to have higher moisture, and hence lower CIN, 

than the horizontal mean.  Figure 1 shows time series of the vertical mean of the qv

standard deviation σq between the grid levels nearest 200 and 400 m (this will be 

explained in the next paragraph) along with time series of rainfall and latent heat flux 

(LHF) in the ARM and KWAJEX simulations.  We see that σq varies with LHF in the 

absence of rainfall, which strongly increases σq when it does occur.  During the BOMEX 

simulation, σq = 0.56 ± 0.02 g kg-1. In this paper we treat σq as known, since we are 

focused on testing mass flux closures rather than the holistic performance of a cumulus 

parameterization.  A skilful prediction of σq would require a reasonable precipitation 

estimate, which involves the cloudy updraft model and its interactions with the stratiform 

cloud parameterization as well as the mass flux closure itself, and is left for future work.

In a parameterization, it is more numerically robust to use a layer rather than an 

individual level for estimation of parcel properties.  Thus, we estimate Cu-base from the 

LCL of a parcel having a potential temperature θ equal to the mean 200 m – 400 m 

θ  (rather than the 300 m θ) and a water vapor mixing ratio qv equal to the mean 200 m –
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400 m qv + σq, where σq is the horizontal standard deviation in qv over the same range of 

levels. We will refer to the first CRM grid level above this LCL as the Cu-base.  

Figure 2 shows a time series of cumulus updraft fractional area and Cu-base 

during ARM and KWAJEX. The Cu-base is seen to be near the lowest level of cumulus 

updrafts and is below them only for two brief episodes of shallow cumulus convection 

during ARM.  Cu-base is predicted even at times when no cumulus convection is 

occurring (e. g. ARM day 171). 

KB conditionally sampled Cu-base properties at the level of maximum CRM-

predicted cloud fraction.   During BOMEX, this was the same as our Cu-base.  For the 

ARM simulation, the level of maximum Cu updraft fraction sometimes was well up into 

the cloud layer and far above our LCL-predicted Cu-base (e. g. Day 177) and would not 

be suitable for estimating Cu-base properties. Hence our Cu-base is more suitable than 

KB’s for sampling Cu-base thermodynamic properties in deep convection. Recently, 

Neggers et al (2009) developed a dual mass flux method for estimating cloud base height 

and properties under shallow cumulus convection.  Their method uses surface fluxes and 

an entraining parcel method to estimate updraft parcel excesses and vertical velocity 

scale.  While this method is quite elegant, it is not clear how it can be implemented in a 

precipitating boundary layer with low-level cold pools. 

b. Estimating Cu-base updraft properties

1) CIN

For any air parcel at a given level, its parcel buoyancy is defined as the product of 

gravity g and the relative difference in density temperature Tρ = T(1 + 0.61qv – qc )

between the parcel and the horizontal mean, where qc is the total mixing ratio of all 
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condensed and frozen water, including precipitation.   The CIN is then defined as the 

vertically integrated negative buoyancy of a parcel starting at the grid level nearest 300 m 

and having the 200-400 m vertical and horizontal mean thermodynamic properties, lifted 

adiabatically to Cu-base.  (Note that CIN as used here does not include negative 

buoyancy between cloud base and the level of free convection.  This negative buoyancy 

is commonly included in parcel analysis.) Unlike the test parcel used to calculate Cu-

base, this parcel has no ‘spike’ in qv.

2) VERTICAL VELOCITY

We considered two boundary-layer vertical velocity scales.  The first is the

convective velocity scale w* = (B0zLCL)1/3. Since we are interested in cases in which 

surface-based turbulent updrafts form cumuli, we chose zLCL, the LCL for environmental 

air in the layers between 200 and 400 m, as an estimate of boundary-layer depth. The 

surface buoyancy flux B0 = SHF + (0.61CpTref/L)LHF, where SHF and LHF are the 

domain-mean surface sensible and latent heat fluxes, respectively, and the reference 

temperature Tref is chosen to be the domain average surface temperature.  The second 

velocity scale is TKE1/2, where TKE is derived from the model resolved velocities and is 

horizontally and vertically averaged over all grid points below (but not including) the Cu-

base.  

An alternative way to estimate the vertical velocity scale would be an entraining 

parcel method such as that used by Neggers et al (2009).  This method is elegant and 

perhaps ideal for the shallow cumulus environment for which it was developed.  

However, as discussed above, a boundary layer beneath intensely precipitating cumuli 

may not be well represented by such a method.  
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c. Cu-base mass flux

We define mcb as the domain-averaged volume flux (mass flux divided by 

density) in saturated updrafts exceeding 0.5 m s-1 at the Cu-base; mcb has units of m s-1. 

For simplicity, we will refer to mcb as the mass flux in the remainder of this paper. By 

definition,

mcb = wcbacb, (3)

where wcb is the mass-weighted mean Cu-base cumulus updraft speed and acb is the 

cumulus updraft fractional area. 

In the CIN closure of B04, one makes a parameterized estimate of W as wcb and 

estimates:

acb = c1exp(-c2CIN/W2),  (4)

with W = TKE1/2. 

Our overall approach is as follows. We first find the vertical velocity scale that 

best predicts wcb, as described in the above section.  Then we find the constants c1 and c2

that produce the best prediction of acb in equation (4) over all three simulations.  Then we 

combine our parameterized estimates of wcb and acb and compare this to the actual mcb.

CIN, mass flux, TKE and zcld are all calculated from the instantaneous 3D volume 

output, while the sensible and latent heat fluxes are averages over the hour prior to the 

time of the corresponding 3D volume data.

4. Results

a. Cu-base mass flux and rainfall
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Figure 3 shows time series of the following: saturated updraft mass flux at both 

Cu-base and 600 hPa, Cu-base downdraft mass flux, and rainfall during the ARM and 

KWAJEX simulations.  Downdraft mass flux is the mass flux over all saturated pixels at 

Cu-base with w < 0.  We see here that downdraft mass flux is much smaller than that of 

updrafts. In KWAJEX, Cu-base mass flux is relatively steady despite the variability in 

rainfall. During ARM, both rainfall and Cu-base mass flux are episodic. 

Figure 4 shows scatter plots of the same variables whose time series were shown 

in Fig. 3.  Fig. 4b shows that rainfall covaries closely with 600 hPa mass flux in both 

simulations, with a lag of roughly 1 hour.  Figure 4a shows that the Cu-base and 600 hPa 

updraft mass flux are also correlated, but the correlation is weaker.  Our interpretation is 

that when the large-scale forcings do not support deep cumulus convection, but the 

boundary layer top reaches its lifted condensation level, there can still be shallow 

cumulus convection.  This is consistent with KB’s result that Cu-base mass flux varied 

very little in their idealized shallow-to-deep convection transition even as convection 

deepened and precipitation increased.  

b. CIN and TKE

Figure 5 shows time series of CIN1/2 and TKE1/2 in our simulations.  During 

active convection, CIN and boundary-layer TKE covary (with an overall correlation 

coefficient of 0.68 when Cu-base mass flux is greater than 0.005 m s-1), and each 

fluctuates more than Cu-base mass flux, as also found by KB.  This suggests that a strong 

feedback is regulating CIN/TKE; we will later argue this is a natural consequence of a 

CIN closure. Spikes in TKE in Fig. 5 are usually associated with heavy rainfall.  We infer 
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that they may be associated with precipitation-driven downdrafts and cold pool 

development. In the ARM case, there are also periods of high CIN that are not 

accompanied by precipitation.  These spikes typically have a large ratio of CIN to TKE 

and little or no Cu-base mass flux. We interpret them as periods in which the CIN is too 

large to allow updrafts to reach their LCL. 

Horizontal BL temperature and moisture inhomogeneity creates large spatial 

variations in CIN, especially in cold-pool influenced boundary layers under precipitating 

deep convection. To examine this further, we computed the CIN in each model grid 

column, using the same method described in section 3b1, with the exception that our test 

parcel has the column thermodynamic properties rather than the horizontal mean.  We do 

this analysis during actively convecting times at which the horizontal average Cu-base 

mass flux exceeds 0.02 kg m-2 s-1, a value somewhat less than the BOMEX mean.  We 

then partitioned grid columns into those containing Cu updrafts at Cu-base and the 

columns that do not. Figure 6 illustrates the range of CIN computed column-wise across 

the domain at representative times in each simulation.   We had anticipated that the Cu 

updrafts would preferentially form in columns with the lowest CIN, i.e., that the CIN of 

the columns with cumulus updrafts would lie on the tail of the environmental CIN 

distribution.  However, we found that this preference is surprisingly weak, and really only 

applies to the BOMEX case.  We show several different times in all three simulations, 

encompassing different precipitation regimes.  In all cases, the spread of CIN is roughly 

as wide in the columns that contain Cu updrafts as in those that don’t, and there is a tail 

of high CIN values under cumulus updrafts that presumably are associated with incipient 

cold pools.  For precipitating convection, the mean CIN of Cu-updraft columns can be as 
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large as that of non-Cu columns. We conclude that the horizontal distribution of CIN is 

complex and does not provide additional insights over the domain-mean CIN shown in 

Fig. 5.

c. Vertical velocity scale

We now discuss two other time series shown in Fig. 5, the mass-weighted average 

Cu-base cumulus updraft velocity wcb and the convective velocity w* associated with 

surface buoyancy flux. The convective velocity varies less than TKE1/2, and has 

amplitude similar to mean Cu-base updraft velocity wcb. In the ARM simulation, TKE1/2

and w* are quite similar when there is little or no precipitation.  However, during times of 

moderate or high precipitation, it appears that cold pools contribute far more to TKE1/2

than does w*. Figure 5 shows that wcb is highly correlated with TKE1/2 during KWAJEX, 

during which w* is nearly constant.  It appears that wcb is correlated with w* for ARM, 

during which the diurnal cycle of surface fluxes strongly modulates w*.   However, the 

correlation coefficient between wcb and w* is in fact much smaller than that between wcb

and TKE1/2 in ARM as well as KWAJEX. 

Hence, like B04, we use TKE1/2 to formulate a Cu-base updraft velocity predictor 

that works for both continental and oceanic deep convection.  However, our definition of 

wcb as the mass-weighted mean velocity of saturated updrafts exceeding a threshold 0.5 m 

s-1 introduces a non-zero threshold-dependent intercept in the scatter plot between wcb

and TKE1/2 (not shown). Hence, we predict the Cu-base updraft velocity as 

W = aTKE1/2 + b (5)
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where a = 0.28 and b = 0.64 m s-1 are determined such that the sum of (W - wcb)2 over all 

times for ARM, KWAJEX, and BOMEX is minimized.  We will use Wcb to denote a 

vertical velocity scale with this particular choice of a and b, whereas W will denote a 

generic velocity scale with any choice of these constants. Figure 7a shows that Wcb is a 

skillful predictor of the actual wcb across the three simulated convective regimes. 

d. Cu updraft fractional area

We tested the Boltzmann-like predictor (4) of Cu-base updraft fractional area acb. 

We found that for our three cases, a more skillful prediction is obtained by using TKE in 

the denominator of the exponent of (4) than using the Cu-updraft velocity predictor Wcb
2.  

This may be due to cold pool dynamics causing proportional increases in horizontal CIN 

variability and boundary layer TKE, with cumulus convection developing primarily, but 

not solely, over regions of minimum CIN (e.g., Emanuel 1994, Tompkins 2001).  

Figure 7b shows the relationship between instantaneous Cu-base updraft 

fractional area during all three simulations vs. CIN/TKE. Means of acb across CIN/TKE 

bins of size = 1.3 – chosen to encompass the entire range of CIN/TKE for BOMEX, 

though the results are not sensitive to bin size – are also plotted for each simulation.  We 

fitted an exponential curve (4), with two constraints.  The first is that it should be 

consistent with all three regimes.  The second is that the asymptotic value of acb at zero 

CIN (equal to c1) should be comfortably larger than the typical value of acb in all three 

regimes; we chose c1 = 0.06.  This constraint ensures that the parameterization can 

achieve the needed acb and mass flux for each regime with a positive CIN.  The best-fit 

parameter c2, obtained by minimizing the root mean square (RMS) error between acb and 
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0.06exp(-c2CIN/TKE), is 1.16.  Any c2 in the range 0.85-1.6 gives an error within 5% of 

the minimum, so c2 is not tightly constrained by our simulations, and Fig. 7b,c show fits 

with c2 = 1.   

Figure 7b implies that CIN closure predicts Cu-base cumulus updraft fraction 

fairly well in the mean, though individual three-dimensional volumes commonly deviate 

by a factor of two or more from these predictions. In particular, CIN closure outperforms 

the Grant closure, which would predict constant acb for all values of CIN/TKE.

e. Cu-base mass flux

Combining the results above gives the following closure, which we recommend:

mcb = c1Wcbexp(-c2CIN/TKE), 

c1 = 0.06, c2 = 1, (6)

Wcb = 0.28TKE1/2 + 0.64 m s-1.

Figure 7c compares the simulated Cu-base mass flux with this closure as a joint pdf over 

individual grid volumes.  The correlation coefficient between the simulated and predicted 

values across all three simulations is 0.46.  Given the stochastic and high-frequency 

variability in CIN and TKE – as can be seen in the sampling range of BOMEX in Fig. 7b, 

for example – and the fact that the closure is based entirely on subcloud information, this 

level of skill is quite encouraging. 

Fig. 7c shows that CIN closure can predict the Cu-base mass flux in three very 

different large scale environments.  Furthermore, this closure maintains an important 

feedback between Cu-base and the boundary layer top.  This feedback acts to keep the 

Cu-base near the top of the subcloud mixed layer and keep CIN on the same order as 



20

TKE during periods of active convection. This can be argued using the conceptual 

diagram in Figure 8.  We consider what would happen if the LCL were much higher than 

the top of the boundary layer, as depicted in Fig. 8a.  In this case CIN (proportional to the 

area between the parcel and environmental density temperature) is large.  Very few BL 

parcels would have enough kinetic energy to overcome their CIN and reach the LCL; this 

would be expressed in CIN closure with a very large CIN/TKE, and hence a small Cu-

base mass flux. The boundary layer height would increase via entrainment until the top of 

the boundary layer was once again near the LCL (as depicted in Fig. 8b), and as a result,

CIN/TKE would decrease and the Cu-base mass flux would increase.  This increase in 

Cu-base mass flux would result in increased compensating subsidence, counteracting the 

effect of entrainment and keeping the BL-top from rising further.  Maintaining the tight 

relationship between the BL-top and the cumulus cloud base is a key function of a mass 

flux closure. We believe that any closure that does this and that also prevents convection 

if CIN is large or ECAPE is zero will likely produce satisfactory results in a cumulus 

parameterization (e. g. Albrecht et al 1979 and B04). Thus, the exact choices of c1 and c2, 

of the parameterization of updraft velocity and TKE, and of the Cu-base moisture excess 

σq are perhaps not that important, except that they should be consistent with other 

parameterization assumptions in the host model.

f. CAPE and entraining CAPE.

We also examined the commonly used closure assumption that CAPE or 

entraining CAPE (ECAPE) — the vertically integrated positive buoyancy of cumulus 

updrafts, also called the cloud work function by Arakawa and Schubert (1974) – regulates 
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cloud base mass flux. In particular, we tested whether cloud base mass flux is correlated 

with either CAPE or ECAPE.  In order to avoid issues of parameterization of lateral 

entrainment, which is not our primary concern, we used the SAM-calculated convective 

core temperature, water vapor mixing ratio, and total condensate mixing ratio as well as 

the horizontal mean values in order to calculate the ECAPE of cumulus cores (defined as 

saturated positively buoyant updrafts). Hence our ECAPE should be viewed as a “best-

case” value, more accurately predicted than would be possible in a GCM. We plot Cu-

base mass flux against CAPE and ECAPE in Figure 9a-b.

CAPE is a poor predictor of Cu-base mass flux in these simulations.  CAPE is 

somewhat negatively correlated with Cu-base mass flux in our ARM and KWAJEX 

simulations, as already noted by Sobel et al (2004) for KWAJEX and Mapes and Houze 

(1993) for the Australian monsoon. This correlation is probably due to CAPE 

maximizing in periods of mid-tropospheric dryness unfavorable for the deepening of 

cumulus updrafts. The negative correlation is weaker in ARM than KWAJEX.  Some 

positive correlation between diurnal cycles of CAPE and precipitation (and hence Cu-

base mass flux) during ARM is expected that may partly cancel the effect mentioned 

above. 

ECAPE is positively correlated with Cu-base mass flux, with a correlation of 0.40 

during ARM and 0.49 during KWAJEX.  This is comparable to the correlations between 

mcb and the CIN-based predictor (6); these correlations are 0.38 for ARM and 0.76 for 

KWAJEX. However, the BOMEX case has little ECAPE but a large Cu-base mass flux 

compared to the deep convective cases, so the same relationship between ECAPE and 

mass flux cannot be used for both shallow and deep convection. This is consistent with 
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our view that boundary layer properties largely determine cloud base mass flux, while 

mid-tropospheric properties determine how deep convection can go.  Fig. 9d, in which we 

similarly scatter Cu-base mass flux against CIN closure, illustrates this.  If we inversely 

weigh all three simulations by their length when calculating correlations – so that ARM, 

KWAJEX, and BOMEX contribute equally – the correlation between ECAPE and mcb is 

actually slightly negative (-0.08), while that between mcb and CIN closure is 0.36.  For 

completeness, we have also included in Fig. 9 a scatter plot of mcb against the Grant 

closure (mcb = 0.03w*), which has little skill in predicting Cu-base mass flux in the deep 

convective cases here.

Philosophically, it seems more natural to relate cloud base mass flux to properties 

of the boundary layer (CIN and TKE), where the updrafts originate, than to those of the 

mid-troposphere (ECAPE).  One can envision the updraft buoyancy perturbations 

associated with ECAPE inducing subcloud pressure perturbations that drive updraft mass 

flux, but such a relationship is not documented across the entire spectrum of deep and 

shallow cumulus convection. Another philosophical advantage of CIN closure over 

ECAPE closure is that CIN closure maintains an important fundamental feedback relating 

cumulus convection to the underlying layer in which its updrafts originate, namely that 

cumulus convection will only persist where a suitably defined CIN is small.  ECAPE 

closure does not automatically maintain this relationship and therefore requires an 

auxiliary triggering assumption.

A generalized ECAPE closure such as the relaxed Arakawa-Schubert scheme 

implemented at the Geophysical Fluid Dynamics Laboratory (GFDL Global Atmospheric 

Model Development Team, 2004) may specify a vertical profile of target work functions 
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and relaxation timescales for clouds of different depths such that it can produce 

reasonable Cu-base mass flux values for shallow and congestus convection. This 

method, however, introduces a great number of empirical parameters compared with CIN 

closure, and there has been no demonstration using observations or CRM simulations that 

such target work functions and time scales have any fundamental universality.

It should be noted that both CIN and ECAPE closures, as tested here, use 

quantities not calculated from the mean sounding: CIN closure uses σq and boundary-

layer mean TKE directly from the cloud resolving model, while ECAPE is derived 

entirely from the CRM-calculated core buoyancy profiles. An estimate of ECAPE from 

large scale variables would require parameterizations of lateral entrainment and 

precipitation that will necessarily degrade this predictor.  An estimate of σq and TKE 

from the large scale variables requires an algorithm relating these to the thermodynamic 

and precipitation profiles, as well as a cloud model that can produce reasonable 

precipitation estimates, since rainfall and cold pools strongly increase both of these 

variables.

5. Conclusions

We utilize three CRM simulations forced by idealized large scale observations 

from the ARM Great Plains, KWAJEX, and BOMEX intensive observing periods to 

verify a CIN-based cumulus mass flux closure of the type used by Bretherton et al (2004) 

for shallow, congestus, and deep convection. The closure we recommend, given in (6), 

more skillfully predicts cloud base mass flux than does a closure based on CAPE, and is 

also an improvement over an alternative boundary layer based closure – the Grant closure 
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– that does not use CIN. It performs about as well as a best-case scenario bulk ECAPE 

closure in deep convective environments, and unlike the ECAPE closure, also works for 

shallow convection without parameter changes. CIN closure helps to maintain an

important negative feedback between CIN and Cu-base mass flux, keeping Cu-base near 

the top of the boundary layer.  In addition to CIN, it involves the boundary-layer mean 

TKE and an updraft velocity scale W given in (5), which is a function of TKE rather than 

the convective velocity w* based on the surface buoyancy flux.

The CIN is calculated by adiabatically lifting a test parcel with the mean 

properties of the 200-400 m layer.  It includes only the negative buoyancy integrated up 

to the domain mean Cu-base.  This is estimated as the model grid level above the LCL of 

the same test parcel, but with an added qv equal to the horizontal standard deviation of the 

200-400 m water vapor content.  As with closures based on deep buoyancy profiles, CIN 

closure’s performance is ultimately tied to the quality of other elements of the cumulus 

parameterization of which it is a part. It is an important task for future investigators to 

obtain optimal parameterizations of σq and TKE applicable to a boundary layer under 

deep convection that can complete our mass-flux closure. 
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List of Figures

FIG. 1. Time series of 200 m – 400 m vertical mean of the horizontal standard deviation 

in qv (dark solid line, left vertical axis), along with rainfall and latent heat flux (blue and 

red lines, right vertical axis) for (top) KWAJEX and (bottom) ARM. Rainfall is in units 

of decaWatts per square meter in order to fit on the same axis as latent heat flux.  In 

BOMEX, LHF = 153.4 W m-2, rainfall = 0, and average σq = 0.24 g kg-1.

FIG. 2. Time-height series of Cu updraft fractional area (color) and Cu-base (solid line) 

for  KWAJEX (top) and ARM (bottom). 

FIG. 3. Time series of (top) KWAJEX and (bottom) ARM Cu updraft mass flux at the 

Cu-base (thick black) and 600 hPa (red), as well as saturated Cu-base downdraft mass 

flux (thin black), with the axis on the left. The blue line is 1 hour lagged rainfall, with the 

axis on the right. 

FIG. 4. Scatterplots of (top) 600 hPa Cu mass flux against Cu-base mass flux and

(bottom) 1-hour lagged rainfall against 600 hPa Cu mass flux for all three simulations. 

The correlation between Cu-base mass flux and 600 hPa mass flux is 0.43 for ARM and 

0.73 for KWAJEX, while that between 600 hPa mass flux and rainfall is 0.83 for ARM

and 0.98 for KWAJEX.

FIG. 5. Both panels: upper sets of lines are time series of CIN1/2, TKE1/2, w*, and wcb.  

The thick blue lower lines are one hour-lagged rainfall time series, with axis on the right.  

Upper panel is KWAJEX, lower panel is ARM. During times when mcb > 0.005 m s-1, 

the correlation coefficient between CIN and TKE is 0.61 for ARM and 0.66 for 

KWAJEX.  The correlation between and wcb and TKE1/2 is 0.65 for ARM and 0.84 for 

KWAJEX; that between wcb and w* is 0.10 for ARM and 0.56 for KWAJEX.
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FIG. 6. Distribution of CIN calculated in each grid column for four time snapshots during 

the simulations, and categorized by whether they contain Cu updrafts at Cu-base. Each is 

normalized by the total number of points in its respective category. Both a lightly 

precipitating (a) and heavily precipitating (b) regime during KWAJEX are shown, as well 

as a moderately precipitating time during ARM (c) and a time during BOMEX (d).  

FIG. 7. (a) Scatter plot of predictor vertical velocity scale Wcb = 0.28TKE1/2 + 0.64 m s-1

against actual Cu-base mean updraft velocity wcb for each simulation. (b) Scatter plot of 

Cu-base Cu fractional area acb against CIN/TKE. Stars represent individual time 

snapshots, while other shapes represent averages over CIN/TKE bins, with a bin size of 

1.3. Solid line is the curve 0.06exp(-CIN/TKE). (c) Joint PDF of Cu mass flux at Cu-base 

against that predicted by closure mcb = c1Wcb exp(-c2CIN/TKE), with c1 = 0.06 and c2 = 1.  

The 1:1 line is also plotted for reference.  We use a quadratic shading scale in order to 

better see bins with small but non-zero probability.

FIG. 8. Schematic of the negative feedback between boundary layer height and Cu-base 

mass flux, modulated by CIN.  Profiles of potential density temperature θρ = θ(1 + 0.61qv

- qc) for the sounding (overbar) and a lifted parcel (superscript P) are shown.  A high-CIN 

situation, in which the PBL top is well below Cu-base is illustrated in (a), and the 

opposite is illustrated in (b).

FIG. 9. Scatter plots of Cu-base mass flux against (a) CAPE, (b) ECAPE (entraining 

CAPE or cloud work function), (c) Grant closure (0.03w*), and (d) CIN closure for all 

three simulations. The correlation between mcb and each closure type is as follows: 

CAPE: -0.19 for ARM, -0.26 for KWAJEX, and -0.42 for all three; ECAPE: 0.40 for 

ARM, 0.49 for KWAJEX, and -0.08 overall; Grant: 0.30 for ARM, 0.50 for KWAJEX, 
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and 0.03 overall; CIN: 0.38 for ARM, 0.76 for KWAJEX, and 0.36 overall.  Each 

simulation is given equal weight in overall correlation coefficients.
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FIG. 1. Time series of 200 m – 400 m vertical mean of the horizontal standard deviation 

in qv (dark solid line, left vertical axis), along with rainfall and latent heat flux (blue and 

red lines, right vertical axis) for (top) KWAJEX and (bottom) ARM. Rainfall is in units 

of decaWatts per square meter in order to fit on the same axis as latent heat flux.  In 

BOMEX, LHF = 153.4 W m-2, rainfall = 0, and average σq = 0.24 g kg-1.
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FIG. 2. Time-height series of Cu updraft fractional area (color) and Cu-base (solid line) 

for  KWAJEX (top) and ARM (bottom). 
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FIG. 3. Time series of (top) KWAJEX and (bottom) ARM Cu updraft mass flux at the 

Cu-base (thick black) and 600 hPa (red), as well as saturated Cu-base downdraft mass 

flux (thin black), with the axis on the left. The blue line is 1 hour lagged rainfall, with the 

axis on the right. 
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FIG. 4. Scatterplots of (top) 600 hPa Cu mass flux against Cu-base mass flux and 

(bottom) 1-hour lagged rainfall against 600 hPa Cu mass flux for all three simulations. 

The correlation between Cu-base mass flux and 600 hPa mass flux is 0.43 for ARM and 

0.73 for KWAJEX, while that between 600 hPa mass flux and rainfall is 0.83 for ARM 

and 0.98 for KWAJEX.
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FIG. 5. Both panels: upper sets of lines are time series of CIN1/2, TKE1/2, w*, and wcb.  

The thick blue lower lines are one hour-lagged rainfall time series, with axis on the right.  

Upper panel is KWAJEX, lower panel is ARM. During times when mcb > 0.005 m s-1, 

the correlation coefficient between CIN and TKE is 0.61 for ARM and 0.66 for 

KWAJEX.  The correlation between and wcb and TKE1/2 is 0.65 for ARM and 0.84 for 

KWAJEX; that between wcb and w* is 0.10 for ARM and 0.56 for KWAJEX.
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FIG. 6. Distribution of CIN calculated in each grid column for four time snapshots during 

the simulations, and categorized by whether they contain Cu updrafts at Cu-base. Each is 

normalized by the total number of points in its respective category. Both a lightly 

precipitating (a) and heavily precipitating (b) regime during KWAJEX are shown, as well 

as a moderately precipitating time during ARM (c) and a time during BOMEX (d).  



38

FIG. 7. (a) Scatter plot of predictor vertical velocity scale Wcb = 0.28TKE1/2 + 0.64 m s-1

against actual Cu-base mean updraft velocity wcb for each simulation. (b) Scatter plot of 

Cu-base Cu fractional area acb against CIN/TKE. Stars represent individual time 

snapshots, while other shapes represent averages over CIN/TKE bins, with a bin size of 

1.3. Solid line is the curve 0.06exp(-CIN/TKE). (c) Joint PDF of Cu mass flux at Cu-base 

against that predicted by closure mcb = c1Wcb exp(-c2CIN/TKE), with c1 = 0.06 and c2 = 1.  

The 1:1 line is also plotted for reference.  We use a quadratic shading scale in order to 

better see bins with small but non-zero probability.
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FIG. 8. Schematic of the negative feedback between boundary layer height and Cu-base 

mass flux, modulated by CIN.  Profiles of potential density temperature θρ = θ(1 + 0.61qv

- qc) for the sounding (overbar) and a lifted parcel (superscript P) are shown.  A high-CIN 

situation, in which the PBL top is well below Cu-base is illustrated in (a), and the 

opposite is illustrated in (b).



40

FIG. 9. Scatter plots of Cu-base mass flux against (a) CAPE, (b) ECAPE (entraining 

CAPE or cloud work function), (c) Grant closure (0.03w*), and (d) CIN closure for all 

three simulations. The correlation between mcb and each closure type is as follows: 

CAPE: -0.19 for ARM, -0.26 for KWAJEX, and -0.42 for all three; ECAPE: 0.40 for 

ARM, 0.49 for KWAJEX, and -0.08 overall; Grant: 0.30 for ARM, 0.50 for KWAJEX, 

and 0.03 overall; CIN: 0.38 for ARM, 0.76 for KWAJEX, and 0.36 overall.  Each 

simulation is given equal weight in overall correlation coefficients.
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TABLE 1. A summary of the major diagnostics in this study.

Variable Name Explanation
acb Cu-base cumulus updraft fractional 

area
CIN Convective inhibition CIN of 200-400m horizontal mean 

parcel lifted from 300 m to Cu-base
Cu-base Horizontal mean cumulus cloud base Model grid level above LCL of 200-

400m air (with σq spike) 
ECAPE Entraining CAPE Vertically integrated positive 

buoyancy of cumulus cores
mcb Cu-base mass flux Mass flux of saturated pixels with w 

> 0.5 m s-1 at Cu-base
σq Standard deviation in specific 

humidity
Computed over all model grid 
columns between ~200-400m.

TKE Turbulent kinetic energy ½(u′2+v′2+w′2), averaged 
horizontally and vertically below 
Cu-base.

W Vertical velocity scale in CIN 
closure

W = aTKE1/2 + b for any a or b.

Wcb Our best fit vertical velocity scale Wcb = 0.28TKE1/2 + 0.64

wcb Cu-base updraft velocity

Mass-weighted average velocity of 
saturated updrafts with w > 0 at Cu-
base  

w* convective velocity scale
Based on surface buoyancy flux and 
boundary layer depth




