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Motivation: length scales and microphysics  
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What to expect in this presentation? 

* CONSTRAIN case description of the LES experiments 

* What do we wish to learn? 

* Mean state and fluxes during the cold air outbreak 

* Scale dependency of fluxes and variances 

* Conclusions 



Constrain Case 
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Constrain Case: Lagrangian LES experiment 
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Questions 

1. What is the effect of cloud droplet concentration and ice microphysics on the 

evolution of the Cold Air Outbreak?   

2. What are the dominant length scales of the turbulent transport? 

3. Diagnose dependency of NWP subgrid fluxes on grid size Δx 

4. Run LES in a NWP model (coarse horizontal resolution) 
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Requested output 

1. Time series of scalars 

2. Vertical profiles 

3. 3D fields 



Cloud cover 
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Examples: LWP after 13 hours 



Cloud boundaries 

Cloud top increases with time -> strong entrainment 

Akira's LES gives much thicker cloud layer 
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* DALES results have used original forcings -> runs with updated forcings are still running 

* PALM has no smooth interpolated SST 

* UKMO has short run 

* Usually requested output is not always present or in units different that requested 

=> scale dependency of fluxes shows some robust features 
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Surface heat fluxes 

* Akira's thick cloud layer may be related to very large latent heat fluxes 



270 275 280 285 290
theta_l (K)

0

1000

2000

3000

4000

he
ig

ht
 (m

)

0 1 2 3 4
qt (g/kg)

0

1000

2000

3000

4000

he
ig

ht
 (m

)

0.0 0.1 0.2 0.3 0.4 0.5
ql (g/kg)

0

1000

2000

3000

4000

he
ig

ht
 (m

)

Mean state at t = 5 hours (black) 
Mean state at t = 13 hours (red) 

* at the end of simulation total water content not vertically well mixed  
* DALES early cloud break-up: warmer and drier cloud layer 
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  t = 5 hours (black) 
 t = 13 hours (red) 

* u and v variance increase with time 
* w variance develops signature of two layer turbulence structure 
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Reduce cloud droplet concentration to 10 cm-3 

* much more rapid break-up 
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Reduce cloud droplet concentration to 10 cm-3 

* with lower droplet concentration less LWP and finer cloud structures 

Nc = 50 cm-3 Nc = 10 cm-3 



Reduce cloud droplet concentration to 10 cm-3 

* much more rapid break-up 



Effect of including ice microphysics 

reference 
liquid only 

ice microphysics 
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Some examples of large-scale structures for reference case  
qt and thl at mid-cloud,  t=13 hrs  

* qt and LWP very strongly correlated 
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Some examples of large-scale structures for reference case  
u and v at mid-cloud,  t=13 hrs  

* notice u,v range (min-max 10 m/s) 
* "rings" of downdrafts and updrafts 
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Spectral evolution in DALES 
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Spectral analysis, mid-cloud, t=13 hrs 
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Spectral analysis, mid-cloud, t=13 hrs 
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Akira: u and w at same  
grid location in 3D fields? 



Turbulent/convective flux in traditional NWP 
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Turbulent/convective flux in very high resolution NWP 
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Turbulent/convective flux in very high resolution NWP 

€ 

w'φ'total = w'φ'resolved +w'φ'subgrid

becomes non-zero for sufficiently fine Δx 

should reduce accordingly 



Turbulent/convective flux in very high resolution NWP 

€ 

w'φ'total = w'φ'resolved +w'φ'subgrid

becomes non-zero for sufficiently fine Δx 

should reduce accordingly 

Diagnose resolved and subgrid flux from LES fields as a function 
of the horizontal grid size Δx that the NWP would use 
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Run LES on a coarse horizontal resolution 
DALES Δx = 1600m 
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Run LES on a coarse horizontal resolution 
DALES Δx = 1600m 
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Conclusions 

Microphysics: 
 Cloud break up earlier for low cloud droplet concentration 

Scales: 
 qualitative agreement on scale growth from LES results 
 turbulent fluxes become resolved for Δx<10 km 



To do 

All: provide data if figures presented here are missing your results 

DALES: new runs with forcing 
MPI: include coarse resolution LES runs 
PALM: correct SST  
UKMO: longer runs? 
Akira: LHF , location variables at grid 



Questions 

1. What is the effect of cloud droplet concentration and ice microphysics on the 

evolution of the Cold Air Outbreak?   

2. What are the dominant length scales of the turbulent transport? 

3. Diagnose dependency of NWP subgrid fluxes on grid size Δx 

4. Run LES in a NWP model (coarse horizontal resolution) 



What to expect in this presentation? 

 * Why LES of a cold air outbreak? 

 * Case description and LES experiments 

 * Science Questions, or what do we wish to learn? 

 * Mean state and fluxes during the cold air outbreak 

*   scale dependency of fluxes 

 Conclusions 
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What to expect in this presentation? 


